
www.manaraa.com

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

COGNITIVE COMPUTING: ALGORITHM DESIGN IN

THE INTERSECTION OF COGNITIVE SCIENCE AND

EMERGING COMPUTER ARCHITECTURES

by

BENJAMIN CHANDLER

B.S., Carnegie Mellon University, 2007

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2014

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3626120
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3626120

www.manaraa.com

c© Copyright by
Benjamin Chandler
2014

www.manaraa.com

Approved by

First Reader

Ennio Mingolla, PhD
Professor and Chair, Department of Speech-Language Pathology
and Audiology
Northeastern University

Second Reader

Gregory Snider, MS
Researcher, HP Labs
Hewlett-Packard Company

Third Reader

Arash Yazdanbakhsh, MD, PhD
Research Assistant Professor, Center for Computational Neuro-
science and Neural Technology

www.manaraa.com

COGNITIVE COMPUTING: ALGORITHM DESIGN IN

THE INTERSECTION OF COGNITIVE SCIENCE AND

EMERGING COMPUTER ARCHITECTURES

(Order No.)

BENJAMIN CHANDLER

Boston University, Graduate School of Arts and Sciences, 2014

Major Professor: Ennio Mingolla, PhD, Professor and Chair
Department of Speech-Language Pathology and
Audiology, Northeastern University

ABSTRACT

For the first time in decades computers are evolving into a fundamentally new

class of machine. Transistors are still getting smaller, more economical, and more

power-efficient, but operating frequencies leveled off in the mid-2000’s. Today, im-

proving performance requires placing a larger number of slower processing cores on

each of many chips. Software written for such machines must scale out over many

cores rather than scaling up with a faster single core. Biological computation is an

extreme manifestation of such a many-slow-core architecture and therefore offers a

potential source of ideas for leveraging new hardware. This dissertation addresses

several problems in the intersection of emerging computer architectures and biolog-

ical computation, termed Cognitive Computing: What mechanisms are necessary to

maintain stable representations in a large distributed learning system? How should

complex biologically-inspired algorithms be tested? How do visual sensing limitations

like occlusion influence performance of classification algorithms?

iv

www.manaraa.com

Neurons have a limited dynamic output range, but must process real-world signals

over a wide dynamic range without saturating or succumbing to endogenous noise.

Many existing neural network models leverage spatial competition to address this

issue, but require hand-tuning of several parameters for a specific, fixed distribution

of inputs. Integrating spatial competition with a stabilizing learning process pro-

duces a neural network model capable of autonomously adapting to a non-stationary

distribution of inputs.

Human-engineered complex systems typically include a number of architectural

features to curtail complexity and simplify testing. Biological systems do not obey

these constraints. Biologically-inspired algorithms are thus dramatically more difficult

to engineer. Augmenting standard tools from the software engineering community

with features targeted towards biologically-inspired systems is an effective mitigation.

Natural visual environments contain objects that are occluded by other objects.

Such occlusions are under-represented in the standard benchmark datasets for testing

classification algorithms. This bias masks the negative effect of occlusion on perfor-

mance. Correcting the bias with a new dataset demonstrates that occlusion is a

dominant variable in classification performance. Modifying a state-of-the-art algo-

rithm with mechanisms for occlusion resistance doubles classification performance in

high-occlusion cases without penalty for unoccluded objects.

v

www.manaraa.com

Contents

1 Introduction 1

2 Homeostatic plasticity 6

2.1 Introduction . 6

2.1.1 Synaptic scaling . 8

2.2 Homeostatic recurrent competitive field model 8

2.2.1 First-generation hRCF model 12

2.2.2 Second-generation hRCF model 17

2.3 Results . 19

2.4 Discussion and conclusion . 29

3 Testing and tuning cognitive computing algorithms 31

3.1 Introduction . 31

3.2 A system for cluster-enabled parameter tuning 32

3.2.1 System design . 33

3.3 A system for testing visual algorithms 37

3.3.1 System design . 38

3.4 Results . 40

3.5 Conclusion . 44

4 Robust classification of occluded objects 46

4.1 Introduction . 46

4.1.1 Existing object classification datasets 51

4.1.2 The SORBO dataset . 56

vi

www.manaraa.com

4.1.3 Inpainting over occlusions . 57

4.2 Methods . 58

4.2.1 SORBO construction . 59

4.2.2 Benchmark algorithms and training 66

4.2.3 Recovery using attenuation or inpainting 67

4.2.4 Stereo segmentation . 67

4.3 Results . 68

4.4 Discussion . 71

4.5 Conclusion . 72

5 Conclusion 84

References 86

Curriculum Vitae 90

vii

www.manaraa.com

List of Tables

2.1 Parameters for first-generation hRCF model 14

2.2 Signal functions for first-generation hRCF model 14

viii

www.manaraa.com

List of Figures

2·1 RCF connectivity . 10

2·2 RCF behavior depends on the network signal function 11

2·3 Example trace of a five-node k-winner-take-all RCF network over a

single presentation interval. 16

2·4 Mean input intensity by epoch. 20

2·5 First-generation hRCF stability, linear signal function 22

2·6 First-generation hRCF stability, slower-than-linear signal function . . 23

2·7 First-generation hRCF stability, faster-than-linear (n = 2) signal func-

tion . 24

2·8 First-generation hRCF stability, faster-than-linear (n = 4) signal func-

tion . 25

2·9 First-generation hRCF stability, sigmoid (n = 2) signal function . . . 26

2·10 First-generation hRCF stability, sigmoid (n = 4) signal function . . . 27

2·11 The hRCF model successfully tunes the number of active nodes. . . . 28

2·12 The hRCF model adjusts its sensitivity to compensate for the mean

input intensity. 30

3·1 Architecture diagram for automated parameter tuning system 34

3·2 Sample test report for a library of visual algorithms 39

3·3 Architecture diagram for automated regression testing system 41

3·4 Example result from automated hyperparameter tuning system 43

4·1 Sample images from NORB, ImageNet, and SORBO datasets. 49

ix

www.manaraa.com

4·2 Inpainting over occlusions . 73

4·3 Occlusion recovery using attenuation and inpainting 74

4·4 Accuracy of automatic stereo segmentation 75

4·5 Classification results on SORBO as a function of occlusion level and

training set with the chance algorithm. 76

4·6 Classification results on SORBO as a function of occlusion level and

training set with the Perceptron and ConvNet algorithms. 77

4·7 Classification results on SORBO as a function of occlusion level and

classification algorithm with the Combined training set. 78

4·8 ConvNet classification accuracy when training with either unoccluded

or occluded data and no recovery . 79

4·9 Performance comparison of mechanisms for discounting occluded pixels 80

4·10 Inpainting improves performance on both occluded and unoccluded

test images . 81

4·11 Analysis of segmentation errors . 82

4·12 Performance with inferred versus ground-truth segmentation 83

x

www.manaraa.com

List of Abbreviations

Cog Cog ex Machina
ConvNet Convolutional Neural Network
CPU Central Processing Unit
CSV Comma-Separated Values
GPU Graphics Processing Unit
hRCF Homeostatic Recurrent Competitive Field
ItEM Iterative Evolution of Models
NORB NYU Object Recognition Benchmark
PASCAL VOC PASCAL Visual Object Classes
RCF Recurrent Competitive Field
SORBO Synthetic Object Recognition

Benchmark with Occlusion
VCS Version Control System

xi

www.manaraa.com

1

Chapter 1

Introduction

For the first time in decades computers are evolving into a fundamentally new class of

machine. Transistors are still getting smaller, more economical, and more power-effi-

cient, but operating frequencies leveled off in the mid-2000’s and have been steadily

falling ever since. The key to faster computers used to be an exponential growth in

clock frequency. Today, improving performance requires placing a larger number of

slower processing cores on each of many chips (Kogge et al., 2008). Software written

for such machines must scale out over many cores rather than scaling up with a faster

single core. Biological computation is an extreme manifestation of such a many-

slow-core architecture and therefore offers a potential source of ideas for leverag-

ing new hardware. This dissertation addresses several problems in the intersection of

emerging computer architectures and biological computation, termed Cognitive Com-

puting: What mechanisms are necessary to maintain stable representations in a large

distributed learning system? How should complex biologically-inspired algorithms

be tested? How do visual sensing limitations like occlusion influence performance of

classification algorithms?

Two competing forces are driving the shift to machines with a larger number

of slower cores. Physics is pushing the semiconductor industry inexorably towards

massively parallel computation and tight co-location of processing and memory –

architectural principles expressed in biological systems (Kogge et al., 2008; Mcken-

zie et al., 2010; Snider et al., 2011). Decades of software work, however, relied on

www.manaraa.com

2

fast single-core processor performance. Legacy code and the cost of re-training pro-

grammers to work effectively with new architectures are moderating the rate of the

transition. This growing gap between the needs of software and the constraints of

performing computation in the physical world offers considerable opportunity for new

approaches to computing (Mckenzie et al., 2010; Snider, 2007).

The Cog ex Machina (or Cog) project at HP Labs is an attempt to leverage cer-

tain similarities between emerging computer architectures and biological computation

to tackle problems at the cutting edge of artificial intelligence and machine learning

(Snider et al., 2011). Cog provides a programming model, optimizing compiler, and

runtime system, all of which are designed to scale to hardware with millions of proces-

sor cores. Consistent with biological brain architectures, Cog asserts that the most

practical route to high power efficiency is co-locating memory and computation in

a system with millions of relatively slow processor elements. This strategy is prag-

matic. Clusters of commodity graphics processors (GPUs) are already a reasonably

good match for the Cog programming model. As hardware evolves, Cog applica-

tions can continue riding the commodity curve. The high-performance computing

community expects a thousand-fold increase in hardware capability over the next

decade. The majority of this increase will come from greater parallelism, which Cog

is designed to leverage (Dongarra et al., 2011; Kogge et al., 2008).

A good programming model, while necessary, is insufficient for scaling towards

practical problems. Brains are massively parallel and employ co-located processing

and memory, but are not architected like conventional software systems. Complex

software systems are typically designed with minimally-interacting modules of func-

tionality with as few circular dependencies as possible. Modules are arranged in a

hierarchy of layers, such that each layer leverages the abstractions of the layer below

and provides higher orders of abstraction to the layer above. Brains, in contrast, do

www.manaraa.com

3

not exhibit modularity and abstraction to nearly the same degree and embed learn-

ing everywhere (Felleman and Van Essen, 1991; Modha and Singh, 2010). Standard

software engineering techniques for managing complexity in large systems are thus

hard to apply directly. This means that principles from neuroscience and cognitive

science offer useful hints, but do not map directly to emerging machine architectures.

Conversely, very large clusters of computers cannot be programmed like small

machines. New frameworks are necessary to abstract away parallelism and hard-

ware faults while preserving programmer productivity (Dean and Ghemawat, 2008).

Machine learning and artificial intelligence algorithms designed for fast single-core

processors leverage decades of mathematics and engineering to run efficiently on digi-

tal computers, but frequently cannot translate directly to emerging massively parallel

architectures. A synthesis of biological and computer science insights is necessary to

tackle next-generation problems.

An approach informed by both biology and computer science is particularly well-

suited to vision problems. Cog performs best on problems with strong data locality

and high implicit parallelism. A simple example of an algorithm that exhibits these

properties is convolution. Each output point in a convolution is independent from

the other output points and depends only on a spatially localized region of the input.

This means that a highly parallel computer can distribute the computation across

many cores with very little inter-core communication. Processing bank transactions,

in contrast, is a problem with poor locality and poor implicit parallelism because

each transaction can touch any account in the system. This is an implicit serial bot-

tleneck. Such bottlenecks can pop up in unexpected places. For example, anisotropic

diffusion is a computer vision technique for smoothing out noise while preserving

edge information (Perona and Malik, 1990). While each iteration of this algorithm is

highly parallel and depends only on local information, running anisotropic diffusion

www.manaraa.com

4

to convergence requires information from the entire field (Fischl and Schwartz, 1997).

Many vision problems fit well into parallel architectures due to the locality and

implicit parallelism of visual information. Information flowing from the retina is

organized in a retinotopic map that preserves (with some local spreading) the adja-

cency relationship of information from neighboring photoreceptors. This retinotopic

organization is a common feature in many parts of the visual system. Mammalian

visual cortex contains tens of regions that process information in retinotopic maps

(Felleman and Van Essen, 1991). This property implies high locality and implicit

parallelism because long-range signal transmission is slow and vision must operate

under tight time constraints. Given these physical limitations, the visual system can

only produce quick results if most computation relies on local information and most

signaling happens over short distances.

A sophisticated visual system offers the additional benefit of adaptable behavior.

Organisms as simple as the horseshoe crab have behaviors that are visually driven.

In the case of the horseshoe crab, however, the information flowing from the retina is

highly specialized to a single behavioral task, namely finding a mate (Barlow et al.,

2001).

Mammals lack this degree of specialization, instead relying on a large number

of interacting cortical maps to handle general visual tasks. These cortical maps

interact not just with each other, but guide behavior in real time. This closed loop

between perception and action allows the organism to resolve perceptual ambiguity

and thus operate successfully in a challenging environment. Closed-loop operation

both internally and in concert with the environment is the core of cognitive computing.

This dissertation addresses a cluster of problems aimed at stepping towards such a

system:

1. Homeostatic plasticity: necessary to maintain stability in a large-scale learning

www.manaraa.com

5

system

2. Testing and tuning cognitive computing algorithms: tools to simplify the devel-

opment of complex biologically-inspired algorithms

3. Robust classification of occluded objects: algorithms that degrade gracefully in

response to visual occlusions

(a) Measuring object classification performance with occlusion: a new dataset

designed to diagnose the performance of classification algorithms in oc-

cluded environments

(b) Building an occlusion-resistant object classifier: a new object classification

algorithm designed for state-of-the-art performance in non-occluded envi-

ronments but graceful degradation as the percentage of occluded pixels

increases

www.manaraa.com

6

Chapter 2

Homeostatic plasticity

2.1 Introduction

The noise/saturation dilemma is a classical problem for neural network models of

static spatial pattern processing (Grossberg, 1973). Neurons have a small, fixed out-

put range of approximately two orders of magnitude in spiking rate. If the input

signal is too large, the output will saturate. If the signal is too small, endogenous

noise will dominate the output. Neither of these behaviors are desirable in a neu-

ral system. Communicating behaviorally worthless information squanders valuable

metabolic energy. A well-constructed biological model should adjust its sensitivity to

properly account for the range of inputs.

Some competitive neural network models handle the noise-saturation dilemma by

responding to spatial ratios in the input rather than absolute values. This strategy

works because it encodes the input in an approximately magnitude-invariant manner.

A high-intensity input pattern will produce a similar output as a low-intensity input

pattern if the ratios among inputs to nodes in the network are the same. This is

essentially equivalent to divisive normalization, where each output is divided by the

sum of all outputs.

While a ratio response is much less susceptible to noise and saturation problems,

it discards information about the absolute intensity of the input signal and requires

careful tuning of the network parameters. If the network parameters do not match

www.manaraa.com

7

the input, the network will lose information to saturation or noise even though it re-

sponds primarily to ratios (Grossberg, 1973). This is particularly relevant in changing

environments. If a recurrent competitive field (RCF) is presented with nothing but

noise, the ratio response should be noisy. Similarly, if the input is exceptionally large

compared to past inputs, complete saturation of the output might be a good thing.

An unmodified RCF will attempt to extract ratios in both of these cases, rather

than allowing the entire output to quench, meaning suppress its outputs to zero, or

saturate.

The purpose of the present chapter is to present a network that responds with

some sense of a temporal “running average” to a series of spatial input patterns. The

network should produce uniform zero output in response to a noisy input pattern

that is very weak and saturate uniformly in response to a noisy pattern that is much

stronger than all recent ones. The input levels at which the network should completely

quench or saturate are a function of the past inputs to the network. As such, this

is a temporal noise-saturation dilemma. The network must respond to spatial ratios

for each input, as in the standard noise-saturation dilemma. It must also learn the

distribution of the inputs over time such that it can suppress input patterns that are

exceptionally small and saturate in response to input patterns that are exceptionally

large.

Note that temporal transients present a unique and orthogonal set of challenges

that this work does not address (Gaudiano, 1993; Francis et al., 1994). Temporal

transients require a system that can adapt over a timescale of milliseconds. The

temporal noise-saturation dilemma as defined here applies over timescales of minutes

to days.

www.manaraa.com

8

2.1.1 Synaptic scaling

The biological mechanism, synaptic scaling, described by Turrigiano et al. (1998) and

modeled in van Rossum et al. (2000), offers a potential solution for the temporal noise-

saturation dilemma. Synaptic scaling is an example of a homeostatic learning pro-

cess. Homeostatic learning acts as a stabilizing counter-force for associative learning

processes. Associative processes modify the strength of the connection between two

neurons as a function of the correlation in activity of those two neurons. Generally,

correlated activity increases the connection strength and uncorrelated activity de-

creases the connection strength. Pure associative learning is fundamentally unstable,

however. Increasing the connection strength between two neurons increases the corre-

lation, triggering a further increase in the connection strength. Homeostatic learning

mechanisms pull the system back towards a stable regime that maximizes information

transmission and minimizes information loss to saturation and noise (Turrigiano and

Nelson, 2004). This intrinsic tuning property may allow the system to automatically

find the correct gain and signal transmission properties while minimizing information

loss.

Synaptic scaling serves a similar computational purpose as Oja’s rule and gener-

alized Hebbian learning (Oja, 1982; Hyvärinen and Oja, 1998). The scaling process

uses only information available locally at a connection, but maintains approximately

normalized connection strengths with non-associative learning. A non-associative

learning process adjusts the strength of a connection without regard to the correla-

tion in activity levels between the pre-connection and post-connection nodes.

2.2 Homeostatic recurrent competitive field model

The homeostatic recurrent competitive field (hRCF) model extends the Grossberg

(1973) recurrent competitive field (RCF) model with the homeostatic plasticity model

www.manaraa.com

9

from van Rossum et al. (2000). The RCF model is defined by a single ordinary

differential equation:

ẋi = −Axi + (B − xi)f(xi)− xi
∑
k 6=i

f(xk) + Ii (2.1)

where xi is the activity level of node i, A is a decay constant, B is a maximum activity

level constant, f(x) is a signal function, and Ii is the external input to node i. Such

a network contains a single layer of nodes as shown in Figure 2·1. Each node has an

activity level that decays to zero at a rate proportional to the network parameter A.

Each node has a self-excitation connection that increases activity up to a maximum

level, B, modulated by the signal function f(). Each node inhibits all other nodes,

modulated by the signal function f(). Each node receives an external bottom-up

input defined by Ii.

The analysis in Grossberg (1973) focuses primarily on the behavior of the network

after all the input terms are set to zero. This behavior is governed primarily by the

signal function, f(). There are three primary classes of signal function: linear, faster-

than-linear, and slower-than-linear.

If f is a linear function, such as f(x) = x, the network normalizes the input

and preserves the pattern. Normalization means the network output is approximately

scaled to the range [0, B), no matter the range of the input. Pattern preservation

means the node-to-node ratios in the output match those in the input.

A faster-than-linear signal function, such as f(x) = x2, produces winner-take-all

behavior. In this case, the network allows the largest input node to survive while all

other nodes are quenched to zero. This is also called 0− 1 behavior, as the network

sharpens the input pattern to a single high-activity node.

A slower-than-linear signal function, such as f(x) = x
1+x

acts to homogenize the

www.manaraa.com

10

xi

+

- - - -
+

xi-2 xi-1 xi+1 xi+2

Figure 2·1: RCF connectivity. Node xi has a bottom-up excitatory
input and a recurrent self-excitation connection. It inhibits all other
nodes in the network.

input pattern. All nodes converge to the same non-zero value.

More complex behaviors are possible by building composite signal functions. A

sigmoid function, such as f(x) = x2

α2+x2
with shape parameter α, is an example. This

function joins a faster-than-linear region to a slower-than-linear region at an inflection

point defined by α. The effect is a network that quenches small signals to zero,

while simultaneously preserving and homogenizing large signals. This behavior is k-

winner-take-all. Like the regular winner-take-all case, the output is bi-state. A given

node either wins and maintains a high activity level, or drops to zero. A standard

winner-take-all network allows exactly one winner. A k-winner-take-all network allows

k winners. The precise value of k depends on the input pattern and the network

parameters and has no known analytical expression. Figure 2·2 illustrates network

behavior for each of the four major type of signal functions.

The hRCF model adds a mechanism inspired by the van Rossum et al. (2000)

synaptic scaling model. The core of this model is a single differential equation per

tuned weight:

ẇ = βw[agoal − a] (2.2)

where w is the weight intensity, β is a rate parameter, agoal is a target average activity

www.manaraa.com

11

l

l

l l

l

l

l

l

l

l

l l

l l

l l

l l

l l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

F
T

L
Linear

S
igm

oid
S

T
L

1 2 3 4 5
Node

V
al

ue l

l

Input

Activation

Figure 2·2: RCF behavior depends on the network signal function. Ev-
ery recurrent connection in the network passes through a signal func-
tion, f(x). The form of the signal function determines the type of pat-
tern processing exhibited by the network. With a linear signal function
of the form f(x) = x, the network preserves the input pattern. With
a faster-than-linear (FTL) signal function of the form f(x) = x2, the
network sharpens the input pattern to a single winner. With a slower-
than-linear (STL) signal function of the form f(x) = x

1+x
, the net-

work homogenizes the input. A sigmoid signal function of the form
f(x) = x2

α2+x2
combines a slower-than-linear function and faster-than-

linear function at an inflection point defined by parameter α. This
produces k-winner-take-all behavior. The top k inputs are amplified,
where the remaining nodes are suppressed to zero.

www.manaraa.com

12

level parameter, and a is the current average activity level. This scaling rule is

multiplicative in that the change in the weight is proportional to current value of the

weight, not just the error.

The van Rossum et al. (2000) model only addresses excitatory synapses. The

data in Rutherford et al. (1998), however, suggests that synaptic scaling may have

a corresponding effect in inhibitory synapses. The hRCF model incorporates both

studies by scaling excitatory and inhibitory synapses in a multiplicative manner, but

in opposite directions.

2.2.1 First-generation hRCF model

There are two versions of the hRCF models, differing primarily in how the average

activity level is defined. The first-generation model sums the instantaneous activities

of the nodes in the network and averages the resulting value over time. The second-

generation system defines the average activity level as the average count of active

nodes. This more complex definition of average activity level has desirable behavior

for networks with a sigmoid signal function.

The first-generation hRCF model is defined by the following set of differential

equations:

ẋi = −Axi + (B − xi)(f(xi)w + Ii)− xi
∑
k 6=i

(f(xk)W + Ik) (2.3)

ȧ =
1

τ
(−a+

∑
i

xi) (2.4)

ẇ = βw(G− a) (2.5)

Ẇ = βW (a−G) (2.6)

The network structure and dynamics are identical to a standard Grossberg (1973)

www.manaraa.com

13

RCF, save for the addition of w and W scaling terms and a different connection

pattern between the input layer and network layer. The scaling terms act to tune

the balance of excitation and inhibition in the network. w determines the intensity of

excitation. It increases when the average activity level is too small and decreases when

the average activity level is too large. W determines the intensity of inhibition. It

decreases when the average activity level is too small and increases when the average

activity level is too large. These two processes are a direct application of synaptic

scaling, and are identical save for a sign change. β is the rate parameter and G is the

goal activity level, replacing agoal from van Rossum et al. (2000).

The input layer to network layer connectivity is different from a standard Gross-

berg (1973) RCF in that it is all-to-all instead of one-to-one. Each node receives

excitatory input from the corresponding input node and inhibitory input from the

remaining input nodes. As the interesting segment of the network behavior is that

which takes place after input is switched off, this change only serves to decrease the

convergence time.

The average activity level a is similar to the formulation in van Rossum et al.

(2000). It uses an identical time constant parameter, τ . As the underlying system is

a continuous network instead of a single spiking neuron, the instantaneous activity

the average activity level tracks is the sum across xi.

The network parameters assume the values in Table 2.1. The network size is set

just large enough that the pattern processing is behavior is readily apparent. Network

connectivity is all-to-all, so larger networks are dramatically slower to simulate. The

decay rate is set to a reasonable value given the activation bound, but the network

is not particularly sensitive to this value. The activation bound is similarly uncon-

strained. The chosen value is numerically stable and consistent with prior work. The

sigmoid inflection point is set given the activation bound. Networks with a sigmoid

www.manaraa.com

14

Parameter Description Value
N Number of nodes 5
A Decay rate 1
B Upper activation bound 3
α Inflection point of sigmoid signal function 0.5
τ Time scale for slow averaging process 400
β Homeostasis rate constant 0.005
G Target activity level 3

Table 2.1: Parameters for first-generation hRCF model

Name Function
Linear f(x) = x

Slower than linear f(x) = x
1+x

Faster than linear: n = 2 f(x) = x2

Faster than linear: n = 4 f(x) = x4

Sigmoid: n = 2 f(x) = x2

α2+x2

Sigmoid: n = 4 f(x) = x4

α4+x4

Table 2.2: Signal functions for first-generation hRCF model

signal function will tend to quench units with an activation below this value and

homogenize units with an activation above it. The synaptic scaling parameters τ

and β are set such that synaptic scaling operates on a much slower time scale than

the fast network dynamics. The target activity level is set such that synaptic scaling

process will try to keep an average aggregate network activity equivalent to one fully-

activated node. This is a safe choice for every signal function.

The signal functions, f(x), are chosen from Table 2.2. This set of signal functions

includes at least one example of each major class of pattern processing behaviors. The

faster-than-linear and sigmoid cases include two degrees of nonlinearity, described by

the exponent n. A higher exponent indicates a sharper non-linearity.

The initial conditions are set as follows:

www.manaraa.com

15

xi(0) = 0 (2.7)

x(0) = G (2.8)

w(0) = 1 (2.9)

W (0) = 1 (2.10)

The network is not sensitive to its initial conditions, so long as w(0) and W (0)

are positive. Negative values are outside the normal range, and values of zero would

disable tuning. a(0) is set as if the network were already at an equilibrium average

activity level of G to keep down the simulation time, but non-equilibrium initial values

produce identical steady-state behavior.

Each simulation consists of 500 presentation intervals (or epochs), each running

for ten time units. In the first five time units of each interval, a random input pattern

is presented to the network. Each element in the input pattern is independently

chosen from a uniform random distribution in the range [0, 1]. For the remaining five

time units, input is switched off and the network is allowed to reverberate. Figure 2·3

illustrates a typical epoch with a k-winner-take-all network. In both the input and

no-input cases, five time units is typically sufficient for the fast network dynamics to

equilibrate. At the end of each epoch, each xi is set back to the initial value of zero.

The values of a, w, and W carry over from epoch to epoch.

The input pattern [0.2, 1.0, 0.4, 0.8, 0.2] is used to probe pattern processing be-

havior. This pattern is consistent with that used to illustrate pattern processing in

Grossberg (1973). To visualize pattern processing behavior as of a given presentation

interval, the network is copied and re-simulated using the diagnostic input pattern

instead of a random pattern.

www.manaraa.com

16

0 2 4 6 8 10

Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ct

iv
a
ti

o
n

x0

x1

x2

x3

x4

Figure 2·3: Example trace of a five-node k-winner-take-all RCF network
over a single presentation interval. The instantaneous activations of the
five nodes are labeled x1 through x5. External input is supplied for the
first five time units of the simulation. At t = 5, the input switches off
and the network is free to reverberate. In this case the network chooses
the top two nodes as winners and suppresses the remaining three nodes
to zero. Node two has not yet reached a steady-state value by t =
5, illustrating a subtlety of the simulation protocol. Five time units
of input are typically sufficient for the network to reach equilibrium.
This is not always the case, however. In some instances the simulation
protocol will force the network to respond before the node activities
have settled.

www.manaraa.com

17

2.2.2 Second-generation hRCF model

The second-generation hRCF model replaces the definition of average activity level in

the first-generation model with an average count, k, of active nodes. Tuning k directly

allows the network to exhibit k-winner-take-all behavior reliably with a sigmoid signal

function.

The second-generation hRCF model is defined by the following set of differential

equations:

ẋi = −Axi + (B − xi)(Ii + f(xi))w − xi
∑
k 6=i

(f(xk) + Ik)W (2.11)

k =
∑
i

tanh(10xi) (2.12)

g(t) =
1

1 + e25(−t+7.5)
(2.13)

ȧ =
1

τ
(−a+ k/N)g(t) (2.14)

ẇ = βw(G− a) (2.15)

Ẇ = βW (a−G) (2.16)

The revised equations differ from the first-generation system in three major ways.

First, the excitatory and inhibitory tuning coefficients (w and W) scale both the bot-

tom-up and recurrent network connections. The first-generation system only applied

scaling to the recurrent connections. This change allows the network to converge

more quickly.

The second and third changes are both in the average activity level, a. The first-

generation system tracks the long-term average of the sum of the xi terms. The

second-generation system integrates a strongly non-linear function that estimates

the instantaneous number of active nodes, or k. Network nodes with low or zero

www.manaraa.com

18

instantaneous activity (xi) contribute nothing to this term. Nodes with a moderate

to high instantaneous activity contribute a value of one. The constant 10 in the

expression for k defines “low” at an appropriate level. Instead of tracking the sum of

xi terms, the average activity a instead tracks k directly. This allows the homeostatic

plasticity process to directly tune the number of active nodes.

Averaging the k term over the entire presentation interval over-estimates the

steady-state value of k for a given epoch. All non-zero xi terms immediately in-

crease the value of k by one. This is all the xi terms during the input presentation

phase of each epoch. The third and final modification is a g(t) function aimed at

preventing a from changing until the final 2.5 time units of each epoch. By this

point, the system is typically close to convergence and the instantaneous value for k

is an accurate reflection of the steady-state value. The constants in the expression

for g(t) define an extremely sharp sigmoid function that transitions from zero to one

at t = 7.5.

The parameters match those of the first-generation system with three exceptions.

First, τ has decreased from 400 to 100. This change compensates for the fact that a

is only permitted to change for the final 2.5 time units of each epoch. The value of

a changes for a quarter of the time it would have in the first-generation system, but

it changes four times as quickly during that period. The second change, a β value of

0.01, causes a similar increase in the rate of tuning. This allows the system to reach

a tuned state in fewer epochs.

The final change is a goal activity level, G, of 0.5. This new goal activity level

corresponds to a minor change in the system of differential equations. The first-

generation system treated G as the aggregate goal activity level across the entire

network. The second-generation system uses G as a goal activity level for each node.

The aggregate goal value with a five-node network and G = 0.5 is therefore 2.5. This

www.manaraa.com

19

indicates a target mean-k value of 2.5, or half the network active at the end of each

epoch.

All simulations with the second-generation hRCF model use a sigmoid signal func-

tion with n = 4. This signal function exhibited the strongest k-winner-take-all be-

havior in the simulations with the first-generation hRCF model.

The simulation protocol for the second-generation hRCF system is structured in

the same manner as with the first-generation system. It includes three times as many

epochs, however, and varies the magnitude of the input as a function of the epoch

number. Figure 2·4 shows the mean input intensity as a function of the epoch number.

For the first 500 epochs, inputs are chosen from the range [0, 10]. The second 500

epochs lower the input range to [0, 0.1]. The final 500 epochs increase the range to

[0, 100]. For each block of epochs, the system must adjust its sensitivity to compensate

for the intensity of the input.

2.3 Results

Simulation results for the first-generation model with a linear signal function are

shown in Figure 2·5. Part (a) shows the network state at the end of each of the 500

epochs for each of the model equations. The plot for x includes traces for each of the

five xi equations. The rapid mixing in x indicates that the network is successfully

reverberating with each new random input pattern while the synaptic scaling process

tunes the network. In this case, the tuning process up-regulates excitation and down-

regulates inhibition to reach the goal activity level.

Part (b) shows the pattern processing behavior sampled at four intervals over

the simulation. These results were computed using the probe input pattern. As the

simulation proceeds, the tuning process shifts the network balance towards excitation.

While the pattern remains roughly constant, the magnitude increases accordingly.

www.manaraa.com

20

0 200 400 600 800 1000 1200 1400

Epoch

10-2

10-1

100

101

102

M
e
a
n
 i
n
p
u
t

in
te

n
si

ty

Figure 2·4: Mean input intensity by epoch. For each epoch (presen-
tation interval), each network receives a random input chosen from a
uniform random distribution. The lower bound of this distribution is
always 0. The upper bound is a function of the epoch. For the first
phase of 500 epochs, the upper bound is 10. The second phase lowers
the upper bound to 0.1. The third phase increases the upper bound to
100. This protocol contains a sharp high-to-low intensity transition at
epoch 501 and a sharp low-to-high intensity transition at epoch 1001.

www.manaraa.com

21

Figures 2·6 through 2·10 use a format identical to Figure 2·5. In Figure 2·6, tuning

with a slower-than-linear signal function produces similar results to the linear case.

The output pattern remains roughly constant, but the magnitude shifts to bring the

network to the goal activity level.

Figure 2·7 shows a faster-than-linear signal function with n = 2. In this case, the

tuning process simply acts to sharpen the output slightly. The fast state dynamics

are also important in this case, as the rapid changes indicate that the network is

successfully picking a new winner on each presentation interval.

Figure 2·8 shows a faster-than-linear signal function with n = 4. This case is

effectively identical to that in Figure 2·7.

Figures 2·9 and 2·10 show sigmoid signal functions with n = 2 and n = 4, respec-

tively. The results are similar to the other signal functions. The n = 4 case is slightly

more interesting as the tuning process shifts the quenching threshold. Before tuning,

an input of 0.4 falls below this threshold. This is why the output of node three is

quiet on the first interval. After tuning, the quenching threshold shifts lower, such

that 0.4 is above the threshold.

Figures 2·11 and 2·12 use the second-generation hRCF model. Figure 2·11 illus-

trates successful tuning of k with the second-generation model. As shown in Figure

2·4, the input distribution changes sharply at epochs 501 and 1001. Epoch 501 dra-

matically decreases the input range. Epoch 1001 dramatically increases the input

range. A standard k-winner-take-all RCF with no homeostatic tuning responds by

lowering the value of k for epochs 501 through 1000. The hRCF system, in contrast,

is able to adjust its sensitivity such that the mean value of k returns to the target

level of 2.5. Both systems are generally insensitive to the dramatically larger input

range in epochs 1001 through 1500.

Figure 2·12 expands on the initial result in Figure 2·11 to more directly address

www.manaraa.com

22

0

1

2

3

x

(a) Network state

0

1

2

3

E
p
o
ch

 1

(b) Probe responses

0

1

2

3

4

a

0

1

2

3

E
p
o
ch

 1
7

0

0

1

2

3

4

w

0

1

2

3

E
p
o
ch

 3
4

0

0 100 200 300 400 500

Epoch

0

1

2

3

4

W

0 1 2 3 4

Node

0

1

2

3

E
p
o
ch

 5
0

0
Figure 2·5: First-generation hRCF stability, linear signal function. The
network state (a) indicates that the instantaneous activity x remains
bounded over the 500 presentation intervals while the average activity
level a converges to the goal level. The excitatory weight w and in-
hibitory weight W move in opposite directions to achieve this tuning.
The network gradually loses pattern sensitivity during tuning, indicat-
ing that the network has maintained stability by sacrificing dynamic
range. The pattern responses (b) after the first presentation interval is
stronger than the responses after the 170th, 340th, and 500th presenta-
tion intervals. This reduction in sensitivity follows from the tuning of
the excitatory/inhibitory balance and keeps the average activity level
close to the goal level.

www.manaraa.com

23

0

1

2

3

x

(a) Network state

0

1

2

3

E
p
o
ch

 1

(b) Probe responses

0

1

2

3

4

a

0

1

2

3

E
p
o
ch

 1
7

0

0

1

2

3

4

w

0

1

2

3

E
p
o
ch

 3
4

0
0 100 200 300 400 500

Epoch

0

1

2

3

4

W

0 1 2 3 4

Node

0

1

2

3

E
p
o
ch

 5
0

0

Figure 2·6: First-generation hRCF stability, slower-than-linear signal
function. The tuning behavior (a) is identical to the linear case in
Figure 2·5. The pattern processing behavior (b) is consistently homog-
enizing, however, consistent with the expected behavior for a standard
recurrent competitive field.

www.manaraa.com

24

0

1

2

3

x

(a) Network state

0

1

2

3

E
p
o
ch

 1

(b) Probe responses

0

1

2

3

4

a

0

1

2

3

E
p
o
ch

 1
7

0

0

1

2

3

4

w

0

1

2

3

E
p
o
ch

 3
4

0
0 100 200 300 400 500

Epoch

0

1

2

3

4

W

0 1 2 3 4

Node

0

1

2

3

E
p
o
ch

 5
0

0

Figure 2·7: First-generation hRCF stability, faster-than-linear (n = 2)
signal function. The tuning behavior (a) is identical to the linear case in
Figure 2·5. The pattern processing behavior (b) is consistently winner-
take-all, however, consistent with the expected behavior for a standard
recurrent competitive field.

www.manaraa.com

25

0

1

2

3

x

(a) Network state

0

1

2

3

E
p
o
ch

 1

(b) Probe responses

0

1

2

3

4

a

0

1

2

3

E
p
o
ch

 1
7

0

0

1

2

3

4

w

0

1

2

3

E
p
o
ch

 3
4

0
0 100 200 300 400 500

Epoch

0

1

2

3

4

W

0 1 2 3 4

Node

0

1

2

3

E
p
o
ch

 5
0

0

Figure 2·8: First-generation hRCF stability, faster-than-linear (n =
4) signal function. The tuning behavior (a) is identical to the linear
case in Figure 2·5. The pattern processing behavior (b) is consistently
winner-take-all, however, consistent with the expected behavior for a
standard recurrent competitive field. Increasing the sharpness of the
non-linearity from n = 2 in Figure 2·7 to n = 4 here has no effect on
the pattern processing behavior.

www.manaraa.com

26

0

1

2

3

x

(a) Network state

0

1

2

3

E
p
o
ch

 1

(b) Probe responses

0

1

2

3

4

a

0

1

2

3

E
p
o
ch

 1
7

0

0

1

2

3

4

w

0

1

2

3

E
p
o
ch

 3
4

0
0 100 200 300 400 500

Epoch

0

1

2

3

4

W

0 1 2 3 4

Node

0

1

2

3

E
p
o
ch

 5
0

0

Figure 2·9: First-generation hRCF stability, sigmoid (n = 2) signal
function. The tuning behavior (a) is identical to the linear case in
Figure 2·5. The pattern processing behavior (b) is typically k-winner-
take-all, however, consistent with the expected behavior for a standard
recurrent competitive field. The network chooses three winners until
the final epoch, where it homogenizes the input.

www.manaraa.com

27

0

1

2

3

x

(a) Network state

0

1

2

3

E
p
o
ch

 1

(b) Probe responses

0

1

2

3

4

a

0

1

2

3

E
p
o
ch

 1
7

0

0

1

2

3

4

w

0

1

2

3

E
p
o
ch

 3
4

0

0 100 200 300 400 500

Epoch

0

1

2

3

4

W

0 1 2 3 4

Node

0

1

2

3

E
p
o
ch

 5
0

0

Figure 2·10: First-generation hRCF stability, sigmoid (n = 4) signal
function. The tuning behavior (a) is identical to the linear case in Fig-
ure 2·5. The pattern processing behavior (b) is consistently k-winner-
take-all, however, consistent with the expected behavior for a stan-
dard recurrent competitive field. Sharpening the non-linearity to n = 4
yields a system that maintains k-winner-take-all behavior over all 500
epochs. After the first presentation interval, the network chooses two
winners. For the remaining three sample points, the network chooses
three winners. Tuning k is a desirable behavior that keeps network
activity close to the goal level without sacrificing pattern processing.

www.manaraa.com

28

0 200 400 600 800 1000 1200 1400

Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
e
a
n
 v

a
lu

e
 o

f
k

RCF

hRCF

Target

Figure 2·11: The hRCF model successfully tunes the number of ac-
tive nodes. A standard k-winner-take-all recurrent competitive (RCF)
model responds to the input protocol in Figure 2·4 with a highly vari-
able value for k, or the number of active nodes. When the mean input
intensity drops, the mean value of k drops. A homeostatic recurrent
competitive field (hRCF) with a target value of 2.5 successfully adjusts
its internal balance between excitation and inhibition to tune the value
of k and compensate for the intensity of the input. The mean value of
k oscillates, but converges to the target value within several hundred
epochs.

www.manaraa.com

29

the temporal noise-saturation dilemma. Each trace indicates the sensitivity of a

specific network at a range of input magnitudes. The hRCF system at epoch 1000

has adjusted to very small inputs, and thus has a dramatically higher sensitivity than

the remaining three networks. This pattern indicates a general insensitivity to high-

magnitude inputs inherent to RCF-like models.

2.4 Discussion and conclusion

The homeostatic recurrent competitive field (hRCF) model is a partial success for

resolving the temporal noise-saturation dilemma. By integrating a homeostatic plas-

ticity process, the model is able to restore the desired response properties at small

input ranges where a conventional RCF fails. The RCF foundation limits over-re-

sponse, however. A system will under-respond to small inputs, but will never com-

pletely saturate even in response to inputs that are orders of magnitude larger than

expected. The recurrent inhibitory weights in the system enforce normalization even

under such extreme conditions.

As a model of adaptive behavior, this is an interesting result. A larger cognitive

system composed of homeostatic RCF modules rather than standard Grossberg (1973)

RCF modules would be able to bootstrap itself in response to small inputs. A system

composed of standard RCF modules would convey very little information from module

to module in this case and may fail to operate entirely. In practice, however, a

simple approximation of the full hRCF model is likely sufficient. The output of the

full second-generation model is approximately equivalent to a divisive normalization

followed by a selection of the k highest values. This approximation would likely

exhibit most of the desirable behavior at much lower computational cost.

www.manaraa.com

30

10-2 10-1 100 101 102

Input Magnitude

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 v

a
lu

e
 o

f
k

RCF

hRCF, epoch 500

hRCF, epoch 1000

hRCF, epoch 1500

Figure 2·12: The hRCF model adjusts its sensitivity to compensate for
the mean input intensity. Each trace represents the value of k exhibited
by a single, fixed network when presented with a large number of input
patterns of varying magnitude. A standard Grossberg (1973) RCF
will choose one winner when presented with input of magnitude 10−1,
for instance. This is a measure of the sensitivity of the network. A
standard RCF will choose two winners for inputs of a magnitude greater
than approximately 0.5. Inputs of a smaller magnitude will cause the
network to choose either one or zero winners. The homeostatic tuning in
the hRCF model shifts these thresholds. The epoch-1000 hRCF system
has adjusted to inputs in the range [0, 0.1] and is thus substantially
more sensitive. It chooses more winners in response to inputs of smaller
magnitude than the baseline RCF system. The remaining two hRCF
systems have adapted to input ranges of [0, 10] and [0, 100], respectively.
These traces are nearly identical, indicating a general insensitivity to
very large inputs inherent to RCF-like models.

www.manaraa.com

31

Chapter 3

Testing and tuning cognitive computing

algorithms

3.1 Introduction

Automated testing and parameter tuning are standard, important tools for building

complex software systems. Regression testing detects changes to the system that

break existing functionality as new functionality is added. The system developers

implement a set of pass-or-fail tests, called a test harness, as they build the system.

Running this test harness regularly allows the developers to detect unexpected failures

as they continue to work on the system.

Where automated testing detects inadvertent backwards progress during the de-

velopment of a complex software system, automated parameter tuning accelerates

the rate of forward progress. Complex software systems tend to contain a number of

free parameters that define the behavior of the system. In many cases, the system

developers can either make an analytically correct choice or quickly explore all pos-

sible alternatives to find the best option. Automated tuning covers the cases where

neither of these tactics are practical. A number of algorithms exist that can find

optimal or near-optimal parameter values in dramatically less time than trying every

option. The developer need only supply a metric to minimize or maximize.

Cognitive computing systems can benefit from both of these techniques. Any

behavior for which a developer can write a pass-fail test can go into the test harness

www.manaraa.com

32

for the system. Any behavior that can be measured can be tuned. In practice,

however, complex biologically-inspired algorithms are challenging to test and tune.

This follows from the system architecture. Non-biological systems tend to contain a

layered structure and weakly-coupled components with no cyclic dependencies. These

architectural features contain complexity to individual components and allow for clean

abstraction. Such an architecture is simple to design and simple to test. Biologically-

inspired systems generally violate these architectural principles. Strongly-interacting

components and weak layering are common.

The practical consequence of strongly-interacting components and weak layering is

unconstrained complexity. This means testing any individual component or behavior

of the system generally requires running the entire system. Testing or tuning an indi-

vidual component of the system in isolation is typically not possible. This increases

the magnitude of computational resources necessary to test or tune the system.

This chapter presents two new software systems designed to address the high

demand for computational resources. The first system automates parameter explo-

ration, distributing the compute load over a cluster of worker machines. The second

system provides infrastructure for defining visual tests and automates test harness

execution.

3.2 A system for cluster-enabled parameter tuning

The Iterative Evolution of Models, or ItEM, system is an attempt to accelerate neural

model development through scalable automation of reproducible research. The ItEM

architecture is structured around these design goals. Scalable automation is the prin-

ciple driving force for ItEM; the system exists to automate as much of the neural

modeling workflow as possible. Success is defined by increased modeling through-

put, measured by the rate of adding desirable behaviors to the model. A clustered

www.manaraa.com

33

architecture enables ItEM to scale to however many compute nodes are available.

Reproducibility is a secondary design goal. One of the critical bottlenecks in large-

scale neural modeling is an inability to quickly replicate and build on previous results.

ItEM addresses this problem by linking simulation data to descriptive metadata indi-

cating what version of the code was used to generate that data. Data and associated

metadata cannot be deleted. In addition, ItEM only operates on code that has been

checked in to a version control repository. This repository does not allow users to

modify or delete the revision history. All of these principles could be achieved by

disciplined manual management of simulation code and results, but at the cost of sig-

nificant human effort. ItEM automates management policies and moves them server-

side, so users benefit from a well-maintained repository of code and data without any

manual effort.

3.2.1 System design

System architecture

As shown in Figure 3·1, ItEM is structured around a central daemon process. This

daemon is responsible for maintaining system state, managing the data archive, com-

municating with clients, and scheduling work. Long or computationally expensive

units of work are queued for one of the three pools of workers to handle.

Work is structured in an asynchronous pull model wherever possible. This means

that whenever a task is too big or too complex to complete immediately, that task is

placed in a central queue. Each compute node has a single worker process responsible

for executing tasks on that node. Each worker process fetches a task from the queue,

completes the task, reports back progress, and repeats. Asynchronous means that

the workers complete jobs at their own rate with no inter-worker dependencies. Pull

means that the workers fetch jobs from the queue as quickly as they can rather than

waiting for commands.

www.manaraa.com

34

User

Cog

Version control

system
VCS monitor

ItEM daemon

Utility worker

pool

CPU worker

pool

GPU worker

pool

Utility scratch

space

CPU scratch

space

GPU scratch

space

Data archive

Figure 3·1: Architecture diagram for automated parameter tuning sys-
tem. The Iterative Evolution of Models (ItEM) system automates much
of the manual work necessary to correctly set the parameters for a com-
plex cognitive computing algorithm. Users interact with the system by
extending their Cog ex Machina (Cog) programs with ItEM parameter
annotations. They then check their code in to a shared version control
system (VCS). A VCS monitor script reports the change to the central
ItEM daemon. The ItEM daemon schedules work to an appropriate
pool of worker processes on remote compute nodes. Utility workers
handle long-running work with low compute requirements. CPU jobs
are for data processing. Graphics processor (GPU) nodes handle sim-
ulations. Each type of compute node has local scratch space to store
temporary files. The ItEM daemon collects results, archives data to a
central repository, and makes the data available to users.

www.manaraa.com

35

These two attributes enable simple scalability. As the workload grows, more

workers can be added quickly with zero code changes. For workload bursts, a pull

model also enables full utilization of temporarily allocated resources. The workers

only need to know how to communicate with the central daemon. The daemon is

responsible for any flow-control logic or dependent jobs.

Localizing the system complexity to the daemon dramatically simplifies the soft-

ware compared to a fully distributed process model, but carries the risk of a perfor-

mance bottleneck. The computational throughput of the entire system is limited by

the rate that the daemon can process messages from clients and the workers. In this

arrangement, however, the bottlenecks are significantly easier to localize and address.

In a distributed process model, bottlenecks are generally emergent system properties

requiring changes in multiple locations to fix. A central daemon implies a central bot-

tleneck, which can be resolved either by placing the daemon on a faster machine or

improving the code efficiency in that single program. The daemon already distributes

long-running or expensive computations to workers, so a single daemon running on a

single machine is unlikely to limit the capacity of the system.

All communication with the daemon takes place using a custom binary protocol.

Messages use the Protocol Buffer format, developed by Google as a standard mecha-

nism for data encoding (Dean and Ghemawat, 2010). The Protocol Buffer compiler

automatically generates all the interface code necessary to serialize and de-serialize

binary data from a simple message format specification. This dramatically reduces

the amount of effort needed to construct an efficient binary protocol. Protocol Buffers

are vastly more efficient than text formats, so the same technology is also useful as

an on-disk format for data analysis and archiving.

www.manaraa.com

36

Capabilities

The system is fully integrated with the Cog ex Machina platform (Snider et al., 2011).

Modifying an existing Cog model to support batch execution through ItEM requires

as little as a few additional lines of code. Users need only specify a termination

criteria for the batch simulation and specify what data should be logged. The ItEM

framework extracts data from simulations using the state probing mechanism built in

to Cog, so data logging is as simple as attaching probes and notifying ItEM when the

data from a given probe should be written to disk. The ItEM framework automatically

serializes this data to disk in a format ready for archiving or analysis and uploads the

log back to the central system.

The ItEM framework carries the additional benefit of enabling intelligent re-run-

ning of batch simulations as the code changes. Each time changes are committed to

the central code repository, ItEM automatically recompiles the source tree and queues

batch jobs. Only batch simulation definitions that have changed are recompiled and

re-simulated. This dramatically cuts down on redundant simulations.

To perform simulations or other resource-intensive computations, the system sup-

ports remote workers of three different classes. These classes, Utility, CPU, and GPU,

each require a different resource allocation policy. Utility workers are used for tasks

like managing dependent jobs. This type of work requires exclusive access to a private

copy of the source tree, but is not compute-intensive. A utility worker spends most

of its time waiting for new datasets to come back from other workers. This means

many utility workers can be placed on a single conventional cluster node.

CPU and GPU workers are used for compute-heavy tasks. These workers fetch a

unit of work from the appropriate queue, execute it, and repeat. They do not wait for

results from other parts of the system as the utility workers do. CPU workers are used

for tasks like data analysis that do not require GPU acceleration. They are placed

www.manaraa.com

37

one worker per processor in a conventional CPU-only cluster. GPU workers function

similarly, but are used for Cog simulations requiring GPU acceleration. These workers

are placed one per node in a GPU-enabled cluster.

Simulation definitions need not be fully specified. Parameters may be left as

ranges, rather than discrete values. The system is capable of generating a fixed-

length list of fully-specified models from a grid placed across the parameter space.

This is an “open-loop” or grid search. The utility worker responsible for a given

simulation definition loads the appropriate code, queues the appropriate number of

jobs, and exits immediately. The GPU workers run a simulation at each point in the

parameter space and log the results back to the central system.

3.3 A system for testing visual algorithms

Manual tests are generally less valuable for detecting behavioral regressions. Such

tests cost more time and effort to run, and therefore cannot be run as frequently.

Visual tests are typically in this category. To validate behavior, an investigator

has to run the application, wait for results, and visually inspect those results for

correctness. A human is involved every time such a test is run. In practice, this

burden dramatically reduces the frequency and depth of testing for visual algorithms.

Solving the manual-testing dilemma for visual algorithms requires automated tests

be as easy as possible to write. Visual algorithms are difficult to verify with automatic

tests using standard testing frameworks. This follows from the data-intensive nature

of visual tests. The expected result for a boolean or scalar-valued test can be written

as a single constant. Verifying that a block of code correctly implements the function

f(x) = x2, for instance, would only require a single scalar input and a single scalar

output per test case. Such test cases are terse and simple to include in-line with the

testing code. A visual test, in contrast, typically operates on entire images. This is

www.manaraa.com

38

too much data to embed in the source code for the test. To create such a test, the

investigator would need to manually run the test code, visually inspect the output,

store that output in a file along with the test harness, and modify the test to check

its output against the stored file on each subsequent run.

The visual testing system is aimed at automating this workflow. Currently, such

test cases are too hard to write to be useful in practice. With the new system, the

human is able to visually inspect the test output through a standard interface and all

of the plumbing necessary to check test output against previous outputs is automated.

If the code under test produces an output that is approximately equal to one a human

has already checked, the system will pass or fail the test automatically. This prevents

a human from having to re-check outputs that have not changed. Figure 3·2 shows

the output of a sample test harness for a library of visual algorithms.

3.3.1 System design

As shown in Figure 3·3, the visual testing system adopts a similar architecture to

ItEM. Like ItEM, the primary interaction point with users is the version control

system. Users push their changes to a version control system, where those changes are

picked up for processing. Also like ItEM, a central management process orchestrates

the flow of work using a pool of compute nodes.

The visual testing system differs from ItEM primarily in the degree to which it

incorporates existing software systems. ItEM uses very little third-party software.

The version control system is an open-source component. Cog ex Machina is a sep-

arate project. All other components of ItEM are custom and specific to ItEM. The

visual testing system, in contrast, is primarily composed of existing software with

appropriate custom extensions designed for visual algorithms.

Like ItEM, the visual testing system uses an open-source version control system.

Instead of a custom master process, it uses the TeamCity continuous integration

www.manaraa.com

39

Figure 3·2: Sample test report for a library of visual algorithms. The
implementation of normalized convolution exercised by the Normalized-
ConvolutionSpec test suite passed all of its tests, as indicated by the
green “OK” icon next to the test suite and each test contained in the
suite. The PoissonSpec suite failed one behavioral test (“average”),
indicated by the red error icon. PoissonSpec also contains one test
without a complete implementation (“invert large inputs”), indicated
by the yellow icon. Without a complete test implementation, the test
runner cannot determine if the test passed or failed and thus marks it
as pending. The test runner generated this report in under a minute
on a standard workstation and with no human intervention.

www.manaraa.com

40

system (JetBrains, 2014). TeamCity already includes functionality for monitoring a

version control system, building the code at every change, and running regression

tests in a number of formats, all across a pool of compute nodes. The visual testing

system extends this functionality through a set of custom testing functions and the

necessary database back-end.

To write a visual test, users structure their test code in the same way they would

for a non-visual test. Each test case has an expected output. A typical test case

would include the expected output in-line with the test code. For visual tests, users

instead supply a unique string that points to a set of exemplars stored in the database.

When the test is run, the visual testing framework queries the database for a matching

output that has already been reviewed by a human. If such an output is found, the

framework marks the test as passed or failed depending on the value stored in the

database. If no matching output is found, the framework stores the output to the

database and marks the test as pending.

Users interact with the visual exemplars through a custom web application. This

web application offers a view of all exemplars that have already been classified, as

well as a view of exemplars that still require review. Users can classify exemplars as

passing or failing, or expunge exemplars that are no longer useful. All changes are

stored back to the database and reflected on the next run of the test harness.

3.4 Results

A sample grid search produced by ItEM is shown in Figure 3·4. The ItEM infrastruc-

ture completed 62 simulations across a cluster of five compute nodes to generate this

plot. The cluster reduced the time required to complete the necessary simulations to

only several hours. Automating the grid search eliminated nearly all of the manual

effort necessary to generate the plot.

www.manaraa.com

41

User
Version control

system

TeamCity

master

TeamCity

worker pool
Scratch space

Data archive

Exemplar

database

Review

application

Figure 3·3: Architecture diagram for automated regression testing sys-
tem. The regression testing system adopts a similar architecture as
the ItEM design in Figure 3·1. The commercial TeamCity continuous
integration system replaces many of the custom components, however.
Users still engage the system by extending their existing programs with
appropriate annotations and checking the code in to a version control
repository. The open-source ScalaTest library provides these annota-
tions. TeamCity manages compilation and testing on the worker nodes
and performs any necessary data movement between the worker-local
scratch storage and main data archive. A custom extension to the Sca-
laTest library pushes visual test output to an exemplar database. Users
review these outputs with a web application. TeamCity provides a web
interface where users can monitor their compilation and testing jobs,
as well as review the testing history.

www.manaraa.com

42

The principle limiting factor for ItEM is the lack of re-use of existing software

systems. ItEM is nearly all custom software. This means the system is tightly tuned

for the problems it was intended to address. The high degree of custom software,

however, means that many aspects of the system are rough, unreliable, or hard to

use.

The cluster interface, for instance, is still manual. While the system supports

local utility processes running locally, CPU-only workers for data analysis, and GPU-

enabled workers for simulation, it cannot launch workers itself. An administrator must

manually launch or kill workers depending on the volume of work. While suitable for

tightly supervised one-off runs, manual worker allocation and de-allocation requires

too much manual effort to become part of a regular modeling workflow.

The ItEM system is also unreliable. It has many interlocking components, po-

tentially running across dozens of machines. Such distributed systems are difficult

to implement and even more difficult to make reliable. Many failure modes are rare

and only detected after adding extensive tracing support and accumulating many

operating hours. ItEM has not accumulated enough operating hours to flush out the

failure modes, and does not include sufficient introspection support to adequately

debug rare failure modes. More critically, data persistence is still poorly supported.

If the master process crashes, all in-flight jobs and data will be lost.

There is essentially no human-friendly interface in the current ItEM system. The

only way to monitor progress with the current code is to watch the logs for the central

server. While infrastructure is present to support a user interface, more development

time is needed to build one out.

The visual testing infrastructure avoids many of the limitations of ItEM by heavily

re-using existing code where appropriate. TeamCity, for instance, is a stable, well-

supported core, and provides an easy-to-use web interface for monitoring the progress

www.manaraa.com

43

llll

l

l

l

l

l

ll

ll ll l

l

l

l

ll ll

l

l

l

l

l l

l

l

l

l

l

ll llll

l l

l
l

l

l

l

l

ll

ll

l

ll

l

ll

l

l

l

l0

100

200

0.25 0.50 0.75 1.00
Injected Input

R
ot

at
io

n
R

at
e

Figure 3·4: Example result from automated hyperparameter tuning
system. A ring attractor is a type of neural population that maintains
a burst of rotating activity. This burst moves around the ring of cells
at a rate modulated by the injected input (Fortenberry et al., 2012).
To use a ring attractor as a component of a larger neural model, the
designer must choose an input range that produces a desirable response
in the rotation rate. Each point in the plot represents one simulation
of the ring attractor, so fully characterizing the response function re-
quires a large number of simulations. The Iterative Evolution of Models
(ItEM) system was able to dramatically reduce the time and manual
effort needed to characterize the response function by automatically
distributing a batch of simulations across five worker nodes.

www.manaraa.com

44

of jobs and reviewing historical test results. The system is less optimized for visual

tests, but it runs reliably without significant manual monitoring or tweaking.

The database is the weakest aspect of the visual tuning infrastructure. Best-

practices for automated software testing dictate that all of the state a test depends

on ought to be stored alongside that test. A user, for instance, ought to be able to

back the state of the project up to an arbitrary historical revision, run the tests, and

get identical output to when that revision was first created. This property is valuable

when tracing defects in time or maintaining old releases of the code for external users.

By storing test exemplars in an external database, the visual testing infrastructure

breaks the expectation that historical tests will always return identical results.

3.5 Conclusion

ItEM is capable of tackling real scientific problems. Tight Cog integration means that

existing modeling questions can be quickly adapted for batch simulation using ItEM.

As the system accumulates production operating hours and an increasing number

of failure modes are detected and resolved, ItEM has the potential to evolve into a

critical enabling technology. In its current state, however, ItEM is still too fragile

and labor-intensive for practical use.

The robust core is the most important aspect of the visual testing system in

practice. Modifying Cog to run on top of this core added significant day-to-day

value. The custom extensions for testing visual algorithms, however, did not survive

in production. While these extensions were useful and covered a use case that a regular

testing framework did not support well, the database dependency added significant

unnecessary complexity.

A more reasonable design would keep the same workflow for human review of

exemplars, but store data directly in the version control repository. Replacing the

www.manaraa.com

45

web application with a light-weight local user interface would accelerate the testing

workflow while keeping the test exemplars directly in the version control repository.

The general lesson from both systems is to re-use existing infrastructure whenever

possible and emphasize simplicity. ItEM is at present too complex and fragile to use

in practice without expert supervision, so the ratio of effort to reward is poor. Hand-

tuning the hyperparameters is good enough for most cases, even in hyperparameter-

heavy cognitive computing algorithms.

The visual testing system demonstrated that building a fully custom system is

usually not necessary. Standard testing libraries are not perfect for cognitive com-

puting applications. Tests for data-heavy code are verbose to write. The standard

open-source tools are reliable and easy to use, however, which make them much more

valuable in practice. A few custom testing extensions and the right open-source infras-

tructure produced significantly more value than the fully custom ItEM infrastructure.

www.manaraa.com

46

Chapter 4

Robust classification of occluded objects

4.1 Introduction

Objects that are heavily occluded are more difficult for a classification algorithm than

unobstructed objects. Neither of the current high-profile object classification bench-

marks is well-suited to quantify this degree of difficulty as a function of increasing

occlusion, however (Socher, 2009; Everingham et al., 2009). Both were constructed

from public photo-sharing sites and thus have a bias against occluded images. Hoiem

et al. (2012) used results from the 2007 PASCAL VOC classification task to identify

the most significant sources of error. Classification performance decreased precipi-

tously as the percentage of occluded pixels increased. The infrequent occurrence of

occlusion in the PASCAL data, however, caused the authors to conclude that oc-

clusion resilience has a negligible impact on the total PASCAL performance of an

algorithm (Hoiem et al., 2012).

This assertion follows from the source of the data. Humans captured the images in

PASCAL by deliberately composing and capturing scenes, and as such tended to take

photographs of unobstructed objects close to the center of the frame. This tendency

towards fully visible objects in PASCAL is an example of observer bias in dataset

construction (Torralba and Efros, 2011). Dataset bias in general, of which observer

bias is one subclass, allows algorithms to produce impressive-looking classification re-

sults by over-relying on signals that have a little real-world utility. A specific dataset,

for instance, might contain objects in only a very restricted set of poses or image

www.manaraa.com

47

backgrounds that strongly correlate with the class of the target object (Pinto et al.,

2008; Torralba and Efros, 2011). This bias is difficult to measure and difficult to cor-

rect, weakening the argument that the current large classification datasets accurately

represent the real world (Torralba and Efros, 2011).

Besides representing a biased sample of the real world, the current large-scale

datasets are also missing much of the descriptive metadata needed to accurately

quantify occlusion robustness. An ideal dataset would include a precise description

of the type and level of occlusion as metadata with each sample. Hoiem et al. (2012)

were only able to consider four different cases for occlusion: none, low, medium, and

high. The study defined low as “slight occlusion,” medium as “significant part is oc-

cluded,” and high as “many parts missing or 75% occluded.” The coarse definitions of

occlusion followed from the nature of the data. Everingham et al. (2009) constructed

PASCAL by aggregating and hand-annotating a large collection of images from the

Flickr photo-hosting website. Hoiem et al. (2012) enhanced the PASCAL annotations

with additional detail on level of occlusion. As in Everingham et al. (2009), they had

to do this by hand. This is a standard problem with non-parametric classification

datasets. Such datasets are collected from unlabeled, unconstrained image sources.

The data is thus very diverse, but annotations have to be added by hand and tend

to be information-poor as a practical consequence (Everingham et al., 2009; Socher,

2009).

The NORB dataset is a contrasting example of a recent parametric dataset (LeCun

and Bottou, 2004). NORB contains five image classes with ten objects in each.

For each object, the dataset contains a stereo image pair for each of 36 azimuths,

9 elevations, and 6 lighting conditions. These parameters are carried along with

the image data, allowing investigators to directly measure the sensitivity of their

algorithms to properties like intra-class variation or lighting. Figures 4·1a and 4·1b

www.manaraa.com

48

contrast parametric and non-parametric types of classification datasets.

Performing a more sophisticated analysis of occlusion robustness than Hoiem et al.

(2012) were able to execute requires better descriptive metadata. This chapter intro-

duces the SORBO (Synthetic Object Recognition Benchmark with Occlusion) dataset

to capture class and level of occlusion with much finer resolution than was possible

by hand-annotating PASCAL data, and to support work in occlusion-resistant object

classification. The design matches NORB as much as possible to simplify comparison

with the many NORB results in the literature. Figure 4·1c shows example SORBO

images with varying classes and levels of occlusion.

The ability to precisely measure the impact of occlusion on object classification

performance enables the construction of an occlusion-robust algorithm. Such an al-

gorithm must confront two issues that non-robust algorithms are able to ignore:

1. What visual information belongs to the target object?

2. How should uncertain or non-target information be discounted?

The first problem is one of segmentation. An occlusion-robust classification algo-

rithm must be able to classify each pixel of visual information as figure,ground, or

occlusion. The figure class identifies pixels that belong to the target object. Ground

pixels are either behind or do not overlap the target. Occlusions are pixels in which

the object of interest is hidden because it is obstructed by an object nearer to the

observer. These last two classes are distinct because occlusions cover the target and

may split the figure information in to two or more non-adjacent regions. The ground

is either behind or non-overlapping with the figure and thus cannot cause such splits.

Once the algorithm estimates which information belongs to each class, it must then

discount uncertain or non-target information. Uncertainty arises because the segmen-

tation of the scene is a potentially inaccurate estimate.

www.manaraa.com

49

(a) (b)

(c)

Figure 4·1: Sample images from NORB, ImageNet, and SORBO
datasets. NORB (a) is a parametric dataset designed for experiments
in invariant object classification. It includes five categories of objects,
each with ten specific objects. NORB contains a stereo pair at nine
camera elevations, eighteen camera azimuths, and five light levels for
each instance (LeCun and Bottou, 2004). ImageNet (b) is a non-para-
metric dataset containing a large number of labeled examples scraped
from the Internet. In comparison to NORB, ImageNet has much more
data and many more categories, but typically only a single image for
each object instance. The image parameters are unknown except for the
category (Socher, 2009). SORBO (c) is a new dataset that extends the
NORB data. It preserves the rich parametric metadata from NORB,
but adds various levels of bar, blob, and random stereo occlusions.

www.manaraa.com

50

Segmentation and discounting are relevant tasks even for a classification algorithm,

as opposed to a detection algorithm. In a detection problem the algorithm must

estimate the location of a target object given an input image that may contain a

target object at an arbitrary position in the frame. A subset of input images may

contain no target objects. A classification problem is simpler to solve in that it

enforces viewpoint bias by restricting the input to images with a single dominant

object class close to the center of the frame. The Hoiem et al. (2012) study indicates

that occlusion is a significant issue even for classification problems.

The analysis in Hoiem et al. (2012) was sufficient to establish that existing state-of-

the-art algorithms do not perform well in high-occlusion scenarios. It also established

that the PASCAL VOC dataset is the wrong benchmark to use if high-occlusion

scenarios are important. PASCAL VOC contains relatively few occluded objects,

so the aggregate results are relatively insensitive to how well an algorithm handles

occlusion. For the objects that are occluded, the locations of the occluding pixels

are unknown. This lack of ground-truth segmentation information further limits the

applicability of the PASCAL VOC data to the development of occlusion-resistant

object classification algorithms. SORBO includes this additional metadata.

This chapter introduces a new occlusion-robust object classification algorithm that

leverages the rich metadata in the SORBO dataset. This new algorithm is an exten-

sion of an existing algorithm rather than an entirely custom construction. Extending

an existing algorithm carries the primary benefit of preserving the performance of

the underlying classifier in low-occlusion cases. A state-of-the-art base classifier will

continue to perform as intended on standard datasets like NORB. The new extensions

allow the classifier to degrade in performance more slowly as occlusion increases.

Taken together, parametric occlusion metadata and ground-truth segmentation

information make SORBO an ideal dataset for exploring occlusion-resistant object

www.manaraa.com

51

classification. This chapter first focuses on replicating the Hoiem et al. (2012) study

using the new SORBO dataset. Follow-on experiments build on these results to

construct an occlusion-resistant object classification algorithm from an existing non-

resistant algorithm.

4.1.1 Existing object classification datasets

The majority of current object classification work is organized around two standard

challenge datasets: the ImageNet Large Scale Visual Recognition Challenge (Ima-

geNet) and the PASCAL Visual Object Classes Challenge (PASCAL VOC or PAS-

CAL). Each challenge has an associated dataset. While the two challenges use dif-

ferent data, different tasks, and different accuracy metrics, both are large-scale and

non-parametric.

In the context of object classification, a non-parametric dataset is one in which the

images are sampled from a population with unknown image parameters. The term

does not imply the the images cannot be described by a parameter space. It only

implies that the investigators cannot practically enumerate the image parameters.

Typically this is because the the images are drawn from a very large, weakly con-

strained population with a very large parameter space. Both ImageNet and PASCAL

were constructed using data from public photo-sharing web sites. The population is

thus photographs from the Internet with sufficient contextual information to assign

an approximate category. The initial image category labels in both ImageNet and

PASCAL came from an image search engine. Humans cleaned up the labels and

removed inaccurate examples.

The principle difference between the PASCAL VOC and ImageNet is the number

and structure of the object categories. PASCAL contains four macro categories (per-

son, animal, vehicle, indoor) with a total of twenty subcategories. This relatively flat

category structure and low total category count is consistent with most prior object

www.manaraa.com

52

classification datasets. ImageNet differs in that it contains thousands of categories

arranged in a deep, hierarchical structure. The TinyImages dataset from MIT uses a

similar structure, but only includes very small images (Torralba et al., 2008). Both

ImageNet and TinyImages use category labels from the noun portion of the WordNet

database (Miller, 1995). WordNet includes superordinate and subordinate terms for

each term in the database. Given the label “German shepherd,” for instance, the su-

perordinate label list is {shepherd dog, working dog, dog, canine, carnivore, placental

mammal, vertebrate, chordate, animal}. Each step up the tree of superordinate la-

bels represents an is-a relationship. Algorithms designed for a small, flat hierarchy

of category labels tend not to do well with the large, deep, hierarchical tree of cate-

gory labels in the ImageNet and TinyImages datasets without modification. All three

datasets (PASCAL, ImageNet, TinyImages) are still non-parametric, however.

The NYU Object Recognition Benchmark (NORB) dataset is a recent exam-

ple of a parametric object classification dataset. ImageNet and PASCAL VOC are

both considered non-parametric because they consist of samples drawn from a large

population with unknown image parameters. The ImageNet samples in Figure 4·1b

illustrate this point. The images are all photographs of ships. No ship appears more

than once, however, and parameters like the image composition and pose vector for

the target object are all unknown. More critically, there are additional, uncontrolled

parameters like the time of day, wind, and background. Simply describing all the

sources of parametric variation in the images is impractical due to the size of the

parameter space and the fact that each image would require manual labeling.

This large parameter space is typically taken as an argument that the images

are unbiased when compared to the real world. By this logic, object classification

algorithms that work well on the ImageNet or PASCAL VOC datasets ought to per-

form well on arbitrary images collected from the natural world. In practice, however,

www.manaraa.com

53

this argument doesn’t hold up well. Hoiem et al. (2012) made a critical observa-

tion along these lines: occlusions don’t appear very frequently in the PASCAL VOC

data. This observation about PASCAL contradicts common experience. Humans and

other visual creatures are quite adept at recognizing occluded objects and navigating

through occluded environments because such conditions are normal, not exceptional.

This is an example of observer bias. The PASCAL VOC and ImageNet datasets are

drawn from a population of human-composed and human-captured photographs, not

the population of all natural images. This means that there is a bias towards unoc-

cluded objects that appear close to the center of the frame. Other authors have noted

additional sources of bias, such as predictive statistics from the image background

(Pinto et al., 2008; Torralba and Efros, 2011). Such contextual information typically

helps prime a classifier towards the correct class of an object. When developing a

classification algorithm, however, contextual priming acts as a confounding variable.

The NORB dataset takes a more restrictive approach. Rather than sampling

from a large image population with unknown parameters and poorly understood

bias, NORB is defined by an explicit parameter space. The point in the parameter

space describes the image completely, such that the image could be reconstructed

perfectly given knowledge of the parameters. Such an approach is less “natural”

in that the images are heavily constrained and look less like scenes from the real

world. This follows from the fact that the set of parameters is vastly smaller than the

set of parameters needed to describe natural images. The benefit, however, is that

the creator of the dataset gets to choose which parameters to include. This means

that each exemplar in the dataset includes precise, complete, parametric metadata

for the design parameters. Such metadata is a necessary condition for constructing

experiments to analyze the conditions under which a classification algorithm does

well or poorly.

www.manaraa.com

54

NORB was designed to tackle pose and lighting-invariant object classification.

This goal lead to the choice of design parameters:

1. object class

2. object instance

3. camera elevation

4. camera azimuth

5. lighting condition

The object class is the category to which the object belongs. NORB contains

five categories: four-legged animals, human figures, airplanes, trucks, and cars. The

object instance is the specific object within the category. Each category contains

ten unique instances, for a total of fifty objects. The camera elevation and camera

azimuth describe the position of the cameras relative to the target object. NORB

contains images captured from nine elevations and eighteen azimuths. Finally, the

light level describes the degree of illumination. NORB contains images shot at five

different light levels.

These five parameters describe the desired dimensions of variation in the NORB

images. For all other possible image properties, the authors worked to carefully

control variation. The target objects were painted a uniform color and photographed

on a uniform background. The camera and lights were all positioned by robot. The

object and cameras were carefully positioned such that the object appears in the

center of the frame for both. In practice, this means the five desired sources of

parametric variation describe essentially all of the variability in the images.

The tightly controlled variability and high-quality parametric metadata in NORB

enables a set of experiments that are not practical with non-parametric datasets

www.manaraa.com

55

like ImageNet and PASCAL VOC. Rotation invariance is an example from this set.

Addressing rotational invariance with NORB would simply require slicing the data in

to appropriate testing and training sets. The training set, for instance, might contain

half of the stereo pairs collected from a single camera elevation and azimuth. The

testing set would contain all the remaining data. The rich metadata contained in

NORB means such a slicing would be easy to construct, and the output would be

sufficient to investigate object classification performance as a function of rotation.

Replicating this experiment using the ImageNet or PASCAL VOC datasets would

be both significantly more expensive and significantly more difficult. Hoiem et al.

(2012) offers a template for how to construct the experiment. For a selected subset of

the data, it would be necessary to manually label each image with a pose vector. Once

each image has a pose vector, it would be possible to slice the data and run an analysis.

Experimental control, however, would still be difficult. ImageNet and PASCAL VOC

do not contain multiple poses of the same object. This means the training and testing

sets would contain non-overlapping sets of objects. It thus wouldn’t be possible to

establish how well an object classification algorithm performs on a single object at

various degrees of deflection.

The Hoiem et al. (2012) study did not attempt to address rotation invariance. It

faced a similar problem when attempting to diagnose performance under occlusion,

however. The authors had to manually label the level of occlusion for each of the

images in the dataset. The source dataset (PASCAL VOC) contained many types and

levels of occlusions, so the authors asked the human labelers to classify each object

as no, low, medium, or high occlusion. Such an approach is sufficient to establish a

relationship between occlusion level and classification performance. It is not sufficient,

however, to measure the impact of different types of occlusions or to experiment with

strategies to recover lost performance.

www.manaraa.com

56

4.1.2 The SORBO dataset

The Synthetic Object Recognition Benchmark with Occlusions (SORBO) dataset is a

new derivative of the NORB dataset. Like NORB, it is a tightly controlled, parametric

dataset. The SORBO dataset applies the same design principles expressed in NORB

to the problem of occlusion-resistant object classification. To do this, it includes two

image parameters beyond those contained in NORB: occlusion type and occlusion

level. The occlusion type indicates the class of occluding object in a given image.

SORBO includes bars, blobs, and random noise occlusion classes. The occlusion level

indicates the number of occluded pixels. A pixel does not need to contain an object

to be included in this count, so the number of occluded pixels is equivalent to a ratio

of occluded pixels over the entire image.

Beyond these two additions, SORBO stays as close as possible to NORB such

that NORB results in the literature are directly comparable to SORBO results. In

practice, SORBO achieves this aim by extending the NORB data. Rather than

starting from entirely new images, SORBO contains NORB images with artificially

overlaid occlusions. This is the synthetic aspect of SORBO.

The SORBO dataset is intended to address two questions:

1. How do object classification algorithms perform as a function of occlusion level?

2. Are strategies to mitigate the impact of occlusions on classification performance

effective?

The first point was covered by the analysis in Hoiem et al. (2012): existing state-

of-the-art object classification algorithms are less effective as occlusion increases and

nearly useless in heavily occluded conditions. SORBO includes sufficient metadata to

replicate this analysis. The second point is uniquely addressable with SORBO. The

www.manaraa.com

57

SORBO dataset includes ground-truth segmentations for all images. This ground-

truth segmentation contains an alpha-matte consistent with the approaches in Grady

et al. (2005) and Rother et al. (2004). Pixel values in the alpha-matte are either 0 or

1, where 0 is entirely background and 1 is entirely foreground.

4.1.3 Inpainting over occlusions

Inpainting is a standard technique for restoring damaged paintings and images. Origi-

nally an exclusively manual process performed by skilled artists to restore art, modern

computing has enabled a number of digital equivalents. The essential goal of inpaint-

ing is to minimize the appearance of damaged sections by painting over those sections

in a manner consistent with the rest of the image (Bertalmio et al., 2000). Figure 4·2

is a successful example.

Automated inpainting algorithms differ primarily on how they define consistent.

The images in Figure 4·2 use an algorithm described in Warren (2010). This algorithm

models texture as a single color value and consistency as local similarity of color.

Pixels that are known to be good are treated as Dirichlet boundary constraints. A

Dirichlet pixel is one with a fixed value. These pixels do not change during diffusion

and source color to adjacent floating pixels. After many iterations of color diffusion,

floating regions are filled in with information from the surrounding Dirichlet pixels.

As shown in Figure 4·2, this strategy is highly effective when the region to fill in is

either relatively small or located in a neighborhood without many edges.

Linear diffusion with boundary constraints tends to produce poor results when

filling in large regions or regions that ought to contain many edges. This weakness

is primarily a result of the limited texture model. The algorithm is modeling texture

as a single color value, but a single color value cannot represent an edge. This means

that the algorithm will not propagate edges across large regions of missing informa-

tion. More sophisticated inpainting algorithms use richer representations to prevent

www.manaraa.com

58

smearing in these large regions. Linear diffusion is substantially more resource-effi-

cient, however. Better algorithms produce better results. Linear diffusion produces

good results, but requires very little compute time per image.

4.2 Methods

The principle technical objectives for this chapter are to reproduce the results from

Hoiem et al. (2012) as a baseline case and enable experiments in occlusion-resistant

object classification algorithms. These goals necessitate a scalable experimental in-

frastructure that supports large parametric studies.

In this case, scalable means that the data collection infrastructure can efficiently

distribute work over a pool of compute nodes. Given a perfectly efficient distribution

of work, a task that would take a hundred hours to execute on a single compute

node would require only four hours to execute on a cluster of 25 compute nodes.

Most compute tasks cannot be distributed this efficiently over a large pool of com-

pute nodes. The overhead required to keep all of the compute nodes synchronized

limits performance as the size of the cluster increases. In this case, however, each

trial is independent. The compute nodes do not require synchronization during the

trials. This is an example of an embarrassingly parallel job, for which the theoretical

scalability is nearly perfect. Given the large volume of work and the embarrassingly

parallel nature of the problem, an experimental infrastructure designed to operate on

a compute cluster is a reasonable investment.

All SORBO experiments used a two-tier parallel infrastructure. The management

tier consists of a version control server and a head node. The compute tier contains

16 compute nodes. The version control server is responsible for storing the source code

and small binary assets, as well as a history of changes. The rest of the infrastructure

www.manaraa.com

59

only executes code checked out from the version control server to ensure that all sim-

ulations are traceable and repeatable. The head node is responsible for storing large

binary assets, coordinating experiments, distributing work to the compute nodes, and

archiving the results. Seed data for SORBO is stored here because it is too large to

place on the version control server. The compute nodes are responsible for the actual

execution of trials.

Validating the Hoiem et al. (2012) study required three classifiers and three types

of training data. The three classifier types are chance, perceptron, and ConvNet. The

three types of training data are unoccluded, occluded, and combined.

The chance classifier simply discards the training data and generates random

predications for the testing data. The perceptron classifier is a linear network trained

by stochastic gradient descent. The ConvNet classifier is a multi-layer convolutional

neural network modeled after the classifier in LeCun and Bottou (2004). The “Bench-

mark algorithms” section contains additional detail on these algorithms.

Each of the training data conditions is a different slice of the SORBO dataset.

The unoccluded training condition contains only NORB images, so algorithms trained

in this condition are directly comparable to NORB results in the literature. The

occluded condition contains only images with occlusions applied. The mixed training

data condition contains both types of data. The “SORBO construction” section

contains additional detail on each condition.

4.2.1 SORBO construction

SORBO derives from the NORB normalized-uniform dataset, also termed “small

NORB.” Like NORB, it contains training and test sets of 96x96 pixel stereo images

shot with fixed disparity. Also like NORB, SORBO contains descriptive metadata for

the object class, object instance, camera elevation, camera azimuth, and light level

for each image. SORBO adds two features to NORB:

www.manaraa.com

60

1. Descriptive metadata on the class and level of occlusion

2. A ground-truth segmentation for each image pair

The additional metadata contains sufficient information to completely describe the

occlusion composited over each image. Every image contains two new metadata fields:

occlusion type and occluded pixels. The occlusion type field is a factor variable with

a value chosen from the the set {none, random, bars, blobs}. The occluded pixels field

contains an integer count of occlusion pixels summed across the left and right images.

The count is taken over every pixel in the field of view, not just the pixels where

the target object is present. This means the maximum value for occluded pixels is

2 ∗ 96 ∗ 96, or 18432. The underlying assumption for this choice is that all pixels

from the normalized-uniform NORB data are considered figure. The target object

in the data is of normalized size and centered on a uniform background, so this is a

reasonable assumption.

Additional metadata fields describe the specific occlusion in each images for every

occlusion type except none. For occlusion type random, there are supplementary seed

and threshold fields. The seed is an integer used to prime the pseudo-random number

generator that produces the random occlusion. The threshold field is a floating-point

value in the range [0, 1) that controls the fraction of pixels that are occluded.

For occlusion type bars, there are supplementary omega, theta, phase, and threshold

fields that control the spacing, orientation, and thickness of the occluding noise bars.

Bar occlusions are generated by thresholding a sinusoidal function along an offset

axis. Omega is the angular frequency of the sinusoid. Theta is the angular offset

with respect to the horizontal. The phase determines the starting point on the sinu-

soidal function. The threshold is a floating-point value in the range [0.1, 0.9). Like

the random case, it controls the percentage of pixels that are occluded.

www.manaraa.com

61

For occlusion type blobs, there are supplementary seed, blob n, and blob scale

fields. Like the random case, the seed is an integer used to prime a pseudo-random

number generator. The blob n field is an integer describing the number of blobs in

the image. The blob scale field is an integer describing the size of the blobs.

The occlusion type field, along with the supplementary fields, fully describe the

occlusions and are sufficient to reconstruct them given an additional disparity pa-

rameter. The disparity parameter is an integer that describes the ocular disparity

of the stereo occlusions measured in pixels. It is a global parameter with a value of

five. This value places the occlusions at a depth closer to the observer than the target

objects. It is an integer to simplify segmentation. With an integer value, every pixel

in the data contains information for either the background or the occlusion with no

mixing. There are no border pixels that contain some information from the target

object and some from the occlusion layer. A natural photograph would very rarely

have objects fall precisely on pixel boundaries in this way.

Beyond the additional metadata, SORBO also contains ground-truth segmenta-

tions for both the training and testing sets. These ground-truth segmentations adopt

the alpha-matte standard used in Grady et al. (2005) and Rother et al. (2004). For

each stereo pair in the data, SORBO contains an additional pair of 96 ∗ 96 binary

alpha-matte images. A value of 1 in the alpha-matte indicates that the pixel is an

occlusion. A value of 0 indicates the lack of occlusion.

Like NORB, the images in SORBO are grayscale. For compact storage, each pixel

in NORB is described by a single byte. This means the images in NORB contain

256 gray levels and each pixel has a value in the range [0, 255]. Zero is black and

255 is white. For SORBO, ease of integration with off-the-shelf object classification

algorithms was a higher priority than compactness of representation. SORBO is

stored as 32-bit floating-point values in the range [0, 1], where 0 is black and 1 is

www.manaraa.com

62

white. This choice of simplicity over compactness is reasonable given that networks

are much faster and disks are much larger than those available when NORB was

created.

Occlusions in SORBO are textured with binary noise. Each occluded pixel has a

value of either 0 or 1, chosen from a uniform distribution. This texture is necessary

both to maximally confuse the object classification algorithms and provide an infor-

mation source for the performance-recovery algorithms. See section 4.2.4 for more

detail on this choice.

SORBO contains three different training sets and one test set. The first training

set, called clean, contains only the 24,300 original images from the NORB normalized-

uniform training set. No occlusions are added. This training set is a baseline that

allows direct comparison with the many NORB results in the literature.

The second and third training sets are called comb, or combined, and occ, or

occluded. Both training sets contain 243,000 stereo pairs. This size is consistent

with the jittered and cluttered versions of the NORB dataset. Each stereo pair is

generated by selecting a random stereo pair (with replacement) from the 24,300 pairs

in the NORB normalized-uniform training set, selecting a random occlusion type,

generating random parameters for the chosen occlusion type, and generating random

noise to serve as the texture for the occlusion. The combined training set contains

stereo pairs with all four occlusion types, including none. The occluded training set

excludes the none occlusion type, so all stereo pairs are occluded. All random choices

are made with a uniform distribution over the possible options.

The none occlusion type has no supplemental metadata, so no additional random

choices need to be made and no occlusion texture is generated. The random occlu-

sion type requires a seed and a threshold. The seed is generated from the space of

all possible 32-bit integers. The threshold is floating-point and generated from the

www.manaraa.com

63

range [0, 1). The bars occlusion type requires floating-point omega, theta, phase, and

threshold parameters. Omega is generated from the range [0.5, 10), theta from [0, π),

and phase from [0, π). The threshold is generated from the range [0.1, 0.9). Finally,

the blobs occlusion type requires seed, blob n, and blob scale parameters. The seed

is generated from the space of all possible 32-bit integers. The blob n parameter is

an integer generated from the range [1, 9]. The blob scale parameter is an integer

generated from the range [−5, 5].

The SORBO testing set is generated using the same procedure as the combined

training set, with two exceptions. First, the SORBO testing set uses the NORB testing

stereo pairs instead of the training stereo pairs. The NORB testing and training sets

are structured identically. The difference is the object instances present in each set.

The training data contains instances 4, 6, 7, 8, and 9 of each category. The testing

data contains the remaining instances. This means the testing and training data do

not contain the same objects, just the same object categories. Second, the SORBO

testing set only contains 97,200 stereo pairs. This dataset size is consistent with the

jittered and cluttered versions of NORB.

SORBO construction procedure

The full SORBO dataset contains 607,500 grayscale stereo pairs and an equal number

of alpha-mattes stored as 32-bit floating-point values, for a total of approximately 83

gigabytes of raw data. A total of 64 bits are consumed to represent each pixel,

including both the gray level and alpha-matte. Reducing the per-pixel data from 64

bits to 9 bits, including 8 for the gray level and 1 for the binary alpha-matte, would

reduce the raw data volume to approximately 12 gigabytes. Compression might reduce

this value by another order of magnitude.

The raw data volume, however, is not the limiting factor for performance. Good

machine learning practice dictates that the training data should be shuffled every

www.manaraa.com

64

time it is used to train a classification algorithm. If the SORBO image data were

pre-computed and placed on disk, each training run would need to seek randomly in

the data file for each stereo pair. Disk seeks are very expensive. Reading large blocks

of sequential data from a hard disk is substantially more efficient than reading small

blocks of random data.

Spreading work across a large compute cluster raises an additional set of practical

issues. The data has to be physically placed on one or more disks. Placing it on

a single disk and allowing the remaining nodes to access that master copy over the

network is simpler, but the number of disk seeks per training epoch per disk increases

linearly with the number of compute nodes and the network limits performance. This

is disk seek amplification. Copying the data to a scratch disk on each node requires

additional checks to ensure that stale versions of the data are expunged and each

node always has a fresh copy. The number of disk seeks per training epoch per disk

remains constant, however, so throughput is dramatically higher.

Leveraging the detailed occlusion metadata, the SORBO construction process uses

a third option. The NORB normalized-uniform testing and training image data lives

on a single node with a shared file system, along with the full SORBO metadata.

This metadata is vastly smaller than the image data, at only tens of megabytes. The

NORB normalized-uniform image data is vastly smaller than the full image data for

SORBO, at approximately 3 gigabytes when stored in 32-bit floating-point format.

When a compute node needs to construct a shuffled version of SORBO to train

or test a classification algorithm, it reads the metadata from the shared filesystem,

shuffles only the metadata, and builds a local, shuffled copy of the SORBO image

data on the fly. For each row in the shuffled metadata, the compute node fetches the

appropriate image from the NORB files on the shared filesystem, adds the appropriate

occlusion, and writes a copy of both the occluded data and the alpha-matte to the

www.manaraa.com

65

local disk.

Superficially, this scheme appears to suffer from the same disk seek amplification

problem as the simpler scheme in which SORBO is pre-computed and stored on a

single shared filesystem. In practice, however, only approximately 1.5 gigabytes of

data are “hot” at any given time, meaning being read by the compute nodes. This

is a small enough volume that the operating system caches on the node hosting the

shared filesystem can absorb the load. Given the interconnect and node properties of

the compute cluster, reading the NORB data from a single node does not adversely

affect total performance.

This hybrid scheme splits the construction of SORBO in to two phases. The

first phase is a pre-processing stage to prepare the metadata and convert the NORB

normalized-uniform image sets to a suitable format. A single compute node executes

this stage, since it only needs to occur once. The compute node writes the metadata

to the shared file system as a textual file in comma-separated values (CSV) format.

It also writes the NORB image data as two binary files, one for training and one

for testing, each contained a sequence of 32-bit floating-point values in little-endian

format. The sequence order is row major, assuming a 24300∗2∗96∗96 array of data.

The binary file contains no header or delimiter information. This format is efficient

because it directly corresponds to the layout of the data in memory.

In the second stage, the worker compute nodes load the CSV metadata, map the

appropriate block of NORB image data in to memory, and build a local, shuffled

copy of SORBO on the fly. To keep memory usage under control and accelerate

the simulations, this process is parallelized over a pool of worker processes on each

node. Object classification algorithms do not get access to the entire dataset at once.

Instead, they get a sequence of mini-batches, each containing a thousand rows of

input data. This eliminates the need to wait for the entire dataset to finish processing

www.manaraa.com

66

before the object classification algorithm can start working. As each mini-batch is

completed, it is passed in to the object classification algorithm.

4.2.2 Benchmark algorithms and training

The processing pipeline includes three reference object classification algorithms. The

first is a chance classifier that ignores the training data and makes random predictions

for the testing data. The second is a simple linear perceptron trained by stochastic

gradient descent. The third is a convolutional neural network (ConvNet). Both the

linear classifier and ConvNet implementations are off-the-shelf open-source libraries.

The linear classifier comes from the scikit-learn library (Pedregosa et al., 2011).

Scikit-learn is an open-source machine learning toolkit written for the Python lan-

guage. SORBO classification results use the sklearn.linear model.Perceptron clas-

sification algorithm with default parameters. A perceptron classifier is a good choice

because the algorithm is simple, highly scalable, and amenable to incremental train-

ing. Perceptrons only require one data point at a time in order to learn. This means

the processing pipeline can stream data past the classifier without keeping the entire

dataset in memory. The classifier was trained with a single pass through the shuffled

training set.

The convolutional network uses the open-source cuda-convnet package (Krizhevsky

et al., 2012). This package offers a highly optimized implementation of convolutional

networks for NVIDIA graphics processors. The specific network structure is user-

configurable. All SORBO experiments used a two-layer network. The first layer is

convolutional, and used a bank of 16 5-by-5 stereo filters with a hyperbolic tangent

output function. This hyperbolic tangent is followed by an absolute value nonlinear-

ity. An absolute value nonlinearity outperformed a rectifying nonlinearity in pilot

experiments. The second layer is a fully-connected network with five outputs. These

five outputs correspond to the five object classes. The output from the fully-connected

www.manaraa.com

67

layer passes through a softmax function to generate final prediction probabilities.

The ConvNet classifier required 60 passes through the full training dataset to

converge. For the first 40 passes, the convolutional and fully-connected layers used

a learning rate of 0.001 on the weights and 0.002 on the bias values. Passes 41 - 50

used rates of 0.0001 and 0.0002. Passes 51 - 60 used rates of 0.00001 and 0.00002.

The decreasing learning rates are a form of early stopping (Prechelt, 2012). After 40

passes through the training data, the network starts to over-fit when trained with a

high learning rate and becomes less accurate. The decreasing learning rate for the

final 20 passes allows the network to fine-tune performance without over-fitting.

4.2.3 Recovery using attenuation or inpainting

The SORBO pipeline includes two recovery algorithms. The first is a simple atten-

uation. This algorithm produces a final input image by setting occlusion pixels to

black. Figure pixels pass through without modification. Attenuation leaves visible

occlusions but eliminates the high-frequency texture on the occlusions.

The second recovery algorithm is an open-source digital inpainting algorithm from

the OpenCV library. This algorithm treats occluded pixels as damage and attempts

to fill them in using information from neighboring pixels. The result is an image with

no visible occlusions, but varying amounts of distortion due to the missing information

at the locations of the occlusions. Figure 4·3 contrasts these two strategies.

4.2.4 Stereo segmentation

Automatic segmentation is a difficult and frequently ambiguous problem. State-ofthe-

art segmentation algorithms like GrabCut still require input from a human to cue the

algorithm to the correct target object and clean up the results (Rother et al., 2004).

In practice, the stereo occlusions in SORBO are easy to segment. This follows

from the orientation of the occlusions relative to the observer. SORBO uses planar

www.manaraa.com

68

occlusions placed perpendicular to the camera. This means that the occlusion por-

tions of the left and right images will match perfectly when the two images are aligned

correctly. The automatic segmentation process leverages this property to estimates

the locations of the occluding pixels by correlating the left and right input images

and looking for a sharp peak in the correspondence. A peak is defined as a value

that is twice the magnitude of its immediate neighbors. After identifying a peak in

the correspondence, the algorithm predicts a class for each pixel. Pixels that are very

similar when the left and right images are aligned are classified as occlusion.

The segmentation algorithm is effectively a simple approximation of stereo depth

estimation. Estimating the depth of a pixel from a stereo image pair requires solving

a correspondence problem between the left and right images. For a given landmark in

the environment, the correspondence problem is to locate that landmark in both the

left and right images from the stereo pair. These two pixel-space coordinates, along

with the distance between the cameras when taking the stereo pair, are sufficient to

solve for the distance to that landmark. The planar, perpendicular, textured nature

of the occlusions yields a very simple correspondence problem. Occlusions are simply

pixels in the near depth plane.

Sample outputs from the algorithm are shown in Figure 4·4.

4.3 Results

SORBO contains five classes of objects. Each class contains an approximately equal

number of examples. This means that a classification algorithm which makes a ran-

dom guess for each testing sample should still achieve an accuracy of approximately

20%. As shown in Figure 4·5, this holds up in practice. The chance classification

algorithm ignores the training data and generates a uniformly random category label

for each testing example. This produces accurate predictions of approximately 20%

www.manaraa.com

69

for every trial, at every level of occlusion, and with every variant of the SORBO

training set.

With the remaining classification algorithms, the training protocol has a signifi-

cant impact on performance. As shown in Figure 4·6, the Combined variant of the

SORBO training set produces the most reliable results. This variant includes both

occluded and unoccluded training examples. The Unoccluded training set includes

only the original 24,300 NORB stereo pairs. While this training condition produces

better results with a ConvNet when tested on only unoccluded testing images, the

classification performance degrades much more quickly than either of the training con-

ditions that include occlusions. The Combined and Occluded training set variations

include 243,000 examples. Each class of occlusion appears with equal probability.

This means the Occluded set contains 60,750 more occluded examples than the Com-

bined set. The “chance” line indicates the 20% classification accuracy achievable by

guessing randomly for each testing example.

Figure 4·7 casts these results by classification algorithm rather than training

regime. Only the Combined training results are shown for clarity. This plot con-

firms the central result of Hoiem et al. (2012) with regard to occlusion: state-of-

the-art classification algorithms lose performance as occlusion increases and are only

marginally better than chance in high-occlusion scenarios. Both the perceptron and

convolutional network classifiers exhibit the same decline. The perceptron classifier,

however, performs significantly worse in all conditions. It is also substantially more

vulnerable to training order effects. The variance from run to run is much larger than

with the convolutional network.

All remaining experiments exclude the perceptron classifier. Figure 4·8 covers the

two no-recovery conditions with the convolutional network classifier. These are the

www.manaraa.com

70

baseline conditions for the construction of an occlusion-robust classifier. In both con-

ditions, increasing occlusion causes a decrease in performance. Training with occluded

data reduces the magnitude of this effect and increases robustness. Performance on

unoccluded test images decreases, however.

Figure 4·9 builds from the combined case in Figure 4·8 and adds recovery mech-

anisms. Performance with the attenuation mechanism is indistinguishable from the

no-recovery case at most levels of occlusion. At high levels of occlusion, attenuation

is worse than no recovery. Inpainting, however outperforms the no-recovery case at

all levels of occlusion. This includes unoccluded test images, suggesting that the dis-

occluded training images improve generalization.

Figure 4·10 further explores the generalization effect. The control and occluded

training conditions come from Figure 4·8. The recovery condition is the inpainting

case from Figure 4·9. Inpainting outperformed occluded training on unoccluded test

data. Unoccluded training, however, also outperformed occluded training on unoc-

cluded test data. Figure 4·10 shows that the recovery condition performs the best

even in a direct comparison with the control.

All prior experiments used the ground-truth segmentation masks. As suggested by

Figure 4·4 the automated segmentation algorithm does not have perfect accuracy and

thus may degrade performance of the classifier. Figure 4·11 quantifies the type and

level of error. The automated segmentation algorithm makes no errors on unoccluded

images. Error peaks at a low but non-zero degree of occlusion. False alarms are more

common than misses. Error decreases and the balance of false alarms to misses shifts

towards misses as the occlusion level increases. These facts suggest that the algorithm

has a bias towards indicating a pixel as an occlusion.

Figure 4·12 expands Figure 4·10 with a second recovery condition. The second

recovery condition uses the automated recovery algorithm rather than the ground-

www.manaraa.com

71

truth segmentations. Performance with the new automated segmentation algorithm

matches the system using ground-truth segmentations in high-occlusion conditions.

The generalization effect on unoccluded testing images no longer appears, however.

4.4 Discussion

Objects that are heavily occluded are more difficult to classify than unobstructed ob-

jects. Pervasive observer bias in the major object classification datasets has masked

this effect, however, limiting the utility of state-of-the-art object classification algo-

rithms in the real world.

This chapter introduced the Synthetic Object Recognition Benchmark with Oc-

clusions (SORBO) dataset. SORBO is a derivative of the earlier NYU Object Recog-

nition Benchmark (NORB). Like NORB, SORBO is parametric and optimized for de-

tailed analysis of classification performance. SORBO adds various classes and levels

of stereo occlusions to NORB images to enable precise measurement of classification

performance as a function of occlusion. The dataset is paired with an infrastructure

suitable for high-throughput experimentation on a compute cluster.

Results on SORBO reproduce the analysis in Hoiem et al. (2012). A convolutional

neural network exhibits high performance on unoccluded testing data, but degrades

rapidly with increasing occlusion. At the highest level of occlusion, the performance of

a high-quality classifier is little better than random chance. Training the classifier with

a mix of occluded and unoccluded images produces the most reliably good results. All

training conditions yield poor performance on highly occluded test images, however.

Augmenting a high-quality classifier with an inpainting pre-processing stage suc-

cessfully recovers much of the lost performance. Inpainting using either a ground-

truth or automatically extracted segmentation mask preserves the majority of per-

formance all the way up to the highest level of occlusion. These results suggest

www.manaraa.com

72

that occlusion-robust classification is possible so long as the segmentation problem is

solvable.

While the automatically extracted segmentation masks are fully accurate for un-

occluded images, recovery using the ground-truth masks indicates a surprising gain

in performance. The ground-truth recovery condition outperforms both the control

and occluded training conditions for unoccluded test images. This gain suggests the

inpainting with ground-truth segmentation masks reduces over-fitting and improves

generalization.

4.5 Conclusion

The results suggest two key findings. First, occluding and then dis-occluding a dataset

using inpainting is a viable technique for dataset augmentation. State-of-the-art clas-

sification systems typically include one or more augmentation techniques to increase

the size of the training dataset, reduce over-fitting, and improve generalization. Re-

flections, linear shifts, and elastic distortions are three common classes of augmen-

tation applied to object classification problems. All three build an invariance to an

expected transformation in the data. The digit three is still a three when shifted

several pixels to the left, for instance. The SORBO results indicate that occlusion is

another useful class of dataset augmentation.

Second, extending a standard classification algorithm with an inpainting pre-pro-

cessing stage produces a system that performs at parity with the base system on

unoccluded test images, but exhibits substantially more robust performance as oc-

clusion increases. The critical variable for real-world systems is the quality of the

segmentation masks. A classifier working in concert with a high-quality segmenta-

tion algorithm can perform nearly as well on heavily-occluded images as unoccluded

images.

www.manaraa.com

73

(a) Raw input (b) Inpainted output

(c) Magnified region of inpainted output

Figure 4·2: Inpainting over occlusions. The raw input (a) is a frame of
video masked with an image of retinal veins. The algorithm does not
have access to the pixels covered by the mask. A fast linear diffusion
solver (b) uses the raw input and a segmentation estimate to fill in
over the occluded regions. Magnifying the inpainted output (c) reveals
the weaknesses of this simple technique. The dirt to the left of the
image contains little edge information and inpainting works well. The
boundaries of the rider, however, are badly blurred where an occlusion
is present. More sophisticated inpainting algorithms do not have this
problem but at a cost of significant additional complexity and a much
longer compute time per frame.

www.manaraa.com

74

(a) Sample images from SORBO dataset

(b) Occluded regions discounted by attenuation

(c) Occluded regions discounted by inpainting

Figure 4·3: Occlusion recovery using attenuation and inpainting. Sam-
ple images from the SORBO dataset (a) are recovered using either
attenuation (b) or inpainting (c). These recovery methods are candi-
date techniques for discounting irrelevant information from the images.
Attenuation removes the occluding texture by setting occluding pixels
to black. Inpainting infers a plausible value for the occluded pixels by
using the remaining visible pixels. The dots along the borders of the
inpainted images are an artifact of a boundary condition bug in the
inpainting library routine.

www.manaraa.com

75

(a) Left/right images (b) Ground-truth masks (c) Inferred mask error

Figure 4·4: Accuracy of automatic stereo segmentation. NORB and
SORBO are stereo datasets. Sample images from SORBO (a) con-
tain various types and level of occlusions. SORBO also includes corre-
sponding ground-truth segmentation masks (b). In these masks, white
identifies occlusion pixels and black identifies target pixels. The stereo
estimation algorithm produces a mask using only the raw input images
(a). These estimates tend to have a high false positive rate, but miss
occlusions only at the borders (c). In these error images, Light green
corresponds to a hit. Dark green is a correct rejection. Blue is a false
prediction of occlusion, or false positive. Red is a missed prediction.

www.manaraa.com

76

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
0.185

0.190

0.195

0.200

0.205

0.210

0% 27% 54% 81% 100%
Occlusion Bin

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Training Set

Unoccluded

Combined

Occluded

Figure 4·5: Classification results on SORBO as a function of occlusion
level and training set with the chance algorithm. Points outside the
box plots indicate outliers. The chance classification algorithm ignores
the training data and makes a random guess for each testing sample.
SORBO contains five classes with an approximately equal number of
examples in each. The expected chance performance is therefore 20%.
The occlusion bin percentage indicates the upper bound, inclusive, of
the bin. For example, the 0% bin contains testing samples with zero
occluded pixels and the 27% bin contains samples with greater than
0% and less than or equal to 27% occluded pixels. As expected, the
chance algorithm scores an accuracy of approximately 20% for all trials,
at every occlusion level, and with every variant of the SORBO training
set.

www.manaraa.com

77

chance

l
l

l

l

l

chance

l

l

l

l

l

l

l

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

C
onvN

et
P

erceptron

0% 27% 54% 81% 100%
Occlusion Bin

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Training Set

Unoccluded

Combined

Occluded

Figure 4·6: Classification results on SORBO as a function of occlusion
level and training set with the Perceptron and ConvNet algorithms.
The occlusion bins partition the testing samples as defined in Figure
4·5. Results with the Combined training set are either indistinguish-
able or better than the corresponding results with the Unoccluded or
Occluded training sets with only one exception. A ConvNet training
on unoccluded data outperforms the other two training options when
tested on unoccluded data. Performance degrades more rapidly than
the other conditions as the level of occlusion in the testing images in-
creases, however.

www.manaraa.com

78

chance

l

l

l

0.2

0.4

0.6

0.8

0% 27% 54% 81% 100%
Occlusion Bin

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Algorithm

ConvNet

Perceptron

Figure 4·7: Classification results on SORBO as a function of occlu-
sion level and classification algorithm with the Combined training set.
The occlusion bins partition the testing samples as defined in Figure
4·5. Consistent with the analysis of Hoiem et al. (2012), classification
performance decreases with increasing occlusion and drops to a level
marginally better than chance in high-occlusion conditions.

www.manaraa.com

79

chance

0.00

0.25

0.50

0.75

0% 27% 54% 81% 100%
Occlusion Bin

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Training Set

Unoccluded

Combined

Figure 4·8: ConvNet classification accuracy when training with either
unoccluded or occluded data and no recovery. Both convolutional net-
works have identical architecture. Both conditions pass the input im-
ages to the classifier with no attempt to discount occlusion pixels. In the
“Unoccluded” case, the network is trained with the 24,300 image pairs
in the NORB-simple training set. In the “Combined” case, the network
is trained with the 243,000 image pairs contained in the SORBO-com-
bined training set. Approximately a quarter of these image pairs are
unoccluded. The remaining pairs contain various classes and levels of
occlusion. Training with unoccluded images produces higher accuracy
on the unoccluded testing images. The performance degrades quickly
towards chance as the level of occlusion in the testing images increases,
however. The network trained on combined data is less effective on
unoccluded images but more robust to increasing occlusion.

www.manaraa.com

80

chance

0.00

0.25

0.50

0.75

0% 27% 54% 81% 100%
Occlusion Bin

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Recovery Method

Attenuate

Inpaint

None

Figure 4·9: Performance comparison of mechanisms for discounting oc-
cluded pixels. All three cases use a convolutional network of identical
architecture and trained on the SORBO-combined dataset. Both mech-
anisms for discounting occluded pixels use the ground-truth segmenta-
tion provided with the image data. The discounting mechanism is used
during both the training and testing phases. In the “None” case, the
training and testing images are passed through to the classifier with
no attempt to discount occlusions. In the “Attenuate” case, occlusion
pixels are set to black before going to the classifier. In the “Inpaint”
case, occlusion pixels are filled in using a digital inpainting procedure.
With a convolutional network classifier, attenuation is worse than the
unmodified data. Inpainting, however, is dramatically more effective
than the other candidates at every level of occlusion.

www.manaraa.com

81

chance

0.00

0.25

0.50

0.75

0% 27% 54% 81% 100%
Occlusion Bin

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Condition

Control

Occluded training

Recovery

Figure 4·10: Inpainting improves performance on both occluded and
unoccluded test images. The “Control” and “Occluded training” condi-
tions are the unoccluded and combined training conditions from Figure
4·8. The “Recovery” condition is the inpainting result from Figure 4·9.
The “Recovery” condition is consistently better as occlusion increases.
Discounting occluded pixels using inpainting has the unexpected ben-
efit of also increasing performance on unoccluded images. This is a
dataset augmentation effect. The training set in the “Recovery” and
“Occluded training” conditions is ten times larger than in the “Con-
trol” condition. Inpainting allows the network to leverage this larger
training set without over-fitting.

www.manaraa.com

82

0.00

0.25

0.50

0.75

1.00

0% 27% 54% 81% 100%
Occlusion Bin

P
ro

po
rt

io
n

of
 P

ix
el

s

Condition

Correct rejection

Hit

Miss

False alarm

Figure 4·11: Analysis of segmentation errors. The automated segmen-
tation algorithm leverages the planar structure of the occlusions to esti-
mate which pixels are occlusion and which pixels are figure. Each pixel
falls in to one of four conditions. In the “Hit” and “Correct rejection”
cases, the estimate is correct. A hit occurs when the algorithm predicts
the presence of an occlusion and an occlusion is actually present. A cor-
rect rejection occurs when the algorithm accurately predicts the lack of
an occlusion. The “Miss” and “False alarm” cases are both errors. A
miss occurs when the algorithm predicts the lack of an occlusion, but an
occlusion is present. A false alarm occurs when the algorithm predicts
an occlusion, but no occlusion is present. The accuracy of the auto-
mated segmentation process varies depending on the level of occlusion
in the image pair. For unoccluded image pairs, the process is entirely
accurate. At higher levels of occlusion, overall accuracy drops. False
alarms, however, are much more common than misses. This indicates
a bias towards a marking a given pixel as an occlusion.

www.manaraa.com

83

chance

0.00

0.25

0.50

0.75

0% 27% 54% 81% 100%
Occlusion Bin

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Condition

Control

Occluded training

Recovery − auto

Recovery − data

Figure 4·12: Performance with inferred versus ground-truth segmen-
tation. The “Control”, “Occluded training”, and “Recovery - data”
conditions are the same as in Figure 4·11. The “Recovery - auto” con-
dition is new, and matches the “Recovery - data” condition except for
the source of the segmentation masks. The data case uses the ground-
truth segmentations provided with the dataset. The automatic case
uses only the raw stereo image pairs and infers the segmentation masks.
These two recovery conditions perform at parity at higher levels of oc-
clusion. Using inferred segmentations erases the dataset augmentation
effect observed in Figure 4·11, however. Performance on unoccluded
test images is no better than the occluded training condition.

www.manaraa.com

84

Chapter 5

Conclusion

Closed-loop operation, both internally and in concert with the environment, is the

core of cognitive computing. Systems of this type are difficult to design because they

have high internal complexity and must handle real-time interaction with the external

world. This dissertation addresses a cluster of problems aimed at stepping towards

practical cognitive systems.

Homeostatic plasticity is necessary to maintain stability in a large-scale learning

system. Homeostatic plasticity decreases the amount of effort needed to construct a

system by embedding self-stabilizing learning throughout that system. The system

adapts to its environment in real time. A self-stabilizing system has fewer hyperpa-

rameters that must be set correctly a priori and thus lower design complexity.

Cluster-enabled development tools address design complexity from a different per-

spective. Conventional complex software systems incorporate a number of architec-

tural features to simplify testing and tuning. Cognitive systems tend to lack these

architectural features. Homeostatic plasticity allows the system to adapt to its en-

vironment and is thus one strategy for managing the resulting complexity. A highly

scalable, simple-to-use infrastructure allows investigators to manage complexity by

marshaling a cluster of computers to test and tune the system. The system still con-

tains many hyperparameters, but the investigator can spread the resulting compute

load over many computers.

Robust classification of occluded objects addresses visual sensing in the real world.

www.manaraa.com

85

The standard classification datasets do not accurately capture all of the essential vari-

ables for real-world performance. Occlusion is devastating to state-of-the-art classi-

fication algorithms, but occlusions are so severely underrepresented in the standard

benchmarks that this effect is hidden. A cognitive computing system, however, must

be robust to the properties of the real world. A dataset with explicit bias is sufficient

to measure how occlusion impacts performance. Augmenting a standard classifica-

tion algorithm with a novel pre-processing stage both improves generalization and

dramatically limits performance loss as occlusion increases.

The solutions for all three sections enable or simplify the construction of cognitive

algorithms. Locality and parallelism are the features that tie closed-loop operation

back to emerging hardware and enable practical cognitive computing. Biological com-

putation uses a very large number of slow, spatially distributed processing elements

and infrequent long-range communication to limit power consumption. Most informa-

tion is kept local and high parallelism compensates for the slow speed of the individual

processing elements. Very little existing software runs well on hardware of this class,

however, despite the significant potential efficiency gains. Cognitive computing em-

braces massive parallelism and closed-loop operation to enable a new generation of

intelligent machines; a generation that is sufficiently robust, fast, and power-efficient

to operate in the real world.

www.manaraa.com

86

References

Barlow, R., Hitt, J., and Dodge, F. (2001). Limulus vision in the marine environment.
The Biological bulletin, 200(2):169–76.

Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. (2000). Image inpainting.
In Proceedings of the 27th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’00, pages 417–424. ACM Press.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107.

Dean, J. and Ghemawat, S. (2010). MapReduce: a flexible data processing tool.
Communications of the ACM.

Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J., Barkai, D.,
Berthou, J., Boku, T., Braunschweig, B., Cappello, F., Chapman, B., Choudhary,
A., Dosanjh, S., Dunning, T., Fiore, S., Geist, A., Gropp, B., Harrison, R., Hereld,
M., Heroux, M., Hoisie, A., Hotta, K., Ishikawa, Y., Johnson, F., Kale, S., Kenway,
R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky, A., Lippert, T., Lucas, B.,
Maccabe, B., Matsuoka, S., Messina, P., Michielse, P., Mohr, B., Mueller, M.,
Nagel, W., Nakashima, H., Papka, M., Reed, D., Sato, M., Seidel, E., Shalf, J.,
Skinner, D., Snir, M., Sterling, T., Stevens, R., Streitz, F., Sugar, B., Sumimoto,
S., Tang, W., Taylor, J., Thakur, R., Trefethen, A., Valero, M., van der Steen, A.,
Vetter, J., Williams, P., Wisniewski, R., and Yelick, K. (2011). The International
Exascale Software Project roadmap. International Journal of High Performance
Computing Applications, 25(1):3–60.

Everingham, M., Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2009).
The Pascal Visual Object Classes (VOC) Challenge. International Journal of
Computer Vision, 88(2):303–338.

Felleman, D. J. and Van Essen, D. C. (1991). Distributed hierarchical processing in
the primate cerebral cortex. Cerebral Cortex, 1(1):1–47.

Fischl, B. and Schwartz, E. (1997). Learning an integral equation approximation to
nonlinear anisotropic diffusion in image processing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(4):342 – 352.

www.manaraa.com

87

Fortenberry, B., Gorchetchnikov, A., and Grossberg, S. (2012). Learned integration of
visual, vestibular, and motor cues in multiple brain regions computes head direction
during visually guided navigation. Hippocampus, 22(12):2219–37.

Francis, G., Grossberg, S., and Mingolla, E. (1994). Cortical dynamics of feature
binding and reset: Control of visual persistence. Vision Research, 34(8):1089–
1104.

Gaudiano, P. (1993). A nonlinear model of spatiotemporal retinal processing: Sim-
ulations of X and Y retinal ganglion cell behavior. CAS/CNS Technical Report
Series.

Grady, L., Schiwietz, T., Aharon, S., and Westermann, R. (2005). Random walks for
interactive alpha-matting. Proceedings of VIIP, pages 423–429.

Grossberg, S. (1973). Contour enhancement, short term memory, and constancies in
reverberating neural networks. Studies in Applied Mathematics, pages 213–258.

Hoiem, D., Chodpathumwan, Y., and Dai, Q. (2012). Diagnosing Error in Object
Detectors. ECCV 2012.

Hyvärinen, A. and Oja, E. (1998). Independent component analysis by general
nonlinear Hebbian-like learning rules. Signal Processing.

JetBrains (2014). Continuous Integration for Everybody – TeamCity.

Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau,
M., Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R.,
Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R. S.,
and Yelick, K. (2008). ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems. Technical report.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with
deep convolutional neural networks. Advances in Neural Information Processing
Systems, pages 1–9.

LeCun, Y. and Bottou, L. (2004). Learning methods for generic object recognition
with invariance to pose and lighting. Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 97–104.

Mckenzie, A., Branch, D. W., Forsythe, C., and James, C. D. (2010). Toward
Exascale Computing through Neuromorphic Approaches. Technical report, Sandia
National Laboratories.

Miller, G. (1995). WordNet: a lexical database for English. Communications of the
ACM, 38(11):39–41.

www.manaraa.com

88

Modha, D. S. and Singh, R. (2010). Network architecture of the long-distance path-
ways in the macaque brain. Proceedings of the National Academy of Sciences of
the United States of America, 107(30):13485–90.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal
of mathematical biology.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(7):629–639.

Pinto, N., Cox, D. D., and DiCarlo, J. J. (2008). Why is real-world visual object
recognition hard? PLoS computational biology, 4(1):e27.

Prechelt, L. (2012). Early stopping – But when? In Neural Networks: Tricks of the
Trade, pages 53–67. Springer Berlin Heidelberg.

Rother, C., Kolmogorov, V., and Blake, A. (2004). “GrabCut”: interactive fore-
ground extraction using iterated graph cuts. Computer, 23(3):309–314.

Rutherford, L. C., Nelson, S. B., and Turrigiano, G. G. (1998). BDNF has opposite
effects on the quantal amplitude of pyramidal neuron and interneuron excitatory
synapses. Neuron, 21(3):521–30.

Snider, G., Amerson, R., Carter, D., Abdalla, H., Qureshi, M. S., Leveille, J., Versace,
M., Ames, H., Patrick, S., Chandler, B., Gorchetchnikov, A., and Mingolla, E.
(2011). From Synapses to Circuitry: Using Memristive Memory to Explore the
Electronic Brain. Computer, 44(2):21–28.

Snider, G. S. (2007). Self-organized computation with unreliable, memristive nan-
odevices. Nanotechnology, 18(36):365202.

Socher, R. (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255.

Torralba, A. and Efros, A. (2011). Unbiased look at dataset bias. In CVPR 2011,
pages 1521–1528. IEEE.

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: a large
data set for nonparametric object and scene recognition. IEEE transactions on
pattern analysis and machine intelligence, 30(11):1958–1970.

www.manaraa.com

89

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson, S. B.
(1998). Activity-dependent scaling of quantal amplitude in neocortical neurons.
Nature, 391(6670):892–6.

Turrigiano, G. G. and Nelson, S. B. (2004). Homeostatic plasticity in the developing
nervous system. Nature Reviews Neuroscience, 5(2):97–107.

van Rossum, M. C., Bi, G. Q., and Turrigiano, G. G. (2000). Stable Hebbian learning
from spike timing-dependent plasticity. The Journal of Neuroscience, 20(23):8812–
21.

Warren, J. (2010). Solving Diffusion Curves on GPU. PhD thesis, University of
Dublin, Trinity College.

www.manaraa.com

90

Curriculum Vitae

Benjamin O. Chandler

Year of Birth 1985

Email benjamin.chandler@hp.com

Address HP Labs
1501 Page Mill Rd.
Palo Alto, CA 94304

Education Boston University
Ph.D. candidate Sep. 2007 - present
Carnegie Mellon University
B.S., Cognitive Science Sep. 2003 - May 2007

Experience Systems Research Laboratory, HP Labs
Research Scientist Dec. 2012 - present
Dept. of Cognitive and Neural Systems, Boston University
Research Assistant Sep. 2007 - Nov. 2012
Pittsburgh Supercomputing Center
Student Researcher Jun. 2004 - May 2007

Publications Chandler, B. and Grossberg, S. (2011) Joining distributed pattern
processing and homeostatic plasticity in recurrent on-center off-sur-
round shunting networks: Noise, saturation, short-term memory,
synaptic scaling, and BDNF. Neural Networks.

Snider, G., Amerson, R., Carter, D., Abdalla, H., Qureshi, S., Lev-
eille, J., Versace, M., Ames, H., Patrick, S., Chandler, B., Gorchetch-
nikov, A., and Mingolla, E. (2011) Adaptive Computation with Mem-
ristive Memory. IEEE Computer, 44(2), 21-28.

Gorchetchnikov, A., Versace, M., Ames, H., Chandler, B., Leveille,
J., Livitz, G., Mingolla, E., Snider, G., Amerson, R., Carter, D.,
Abdalla, H., and Qureshi, M.S. (2011) A Unified Learning Frame-
work for Memristive Neuromorphic Hardware. International Joint

www.manaraa.com

91

Conference on Neural Networks (IJCNN) 2011, San Jose, CA.

Livitz, G., Ames, H., Chandler, B., Gorchetchnikov, A., Leveille, J.,
Vasilkoski, Z., Versace, M., Mingolla, E., Snider, G., Amerson, R.,
Carter, D., Abdalla, H., and Qureshi, M.S. (2011) Visually-Guided
Adaptive Robot (ViGuAR). International Joint Conference on Neu-
ral Networks (IJCNN) 2011, San Jose, CA, USA.

Vasilkoski, Z., Ames, H., Chandler, B., Gorchetchnikov, A., Lev-
eille, J., Livitz, G., Mingolla, E., and Versace, M. (2011) Stability
analysis of neural plasticity rules for implementation on memristive
neuromorphic hardware. International Joint Conference on Neural
Networks (IJCNN) 2011, San Jose, CA, USA.

Versace, M. and Chandler, B. (December 2010) MoNETA: A Mind
Made from Memristors. IEEE Spectrum.

Leveille, J., Ames, H., Chandler, B., Gorchetchnikov, A., Mingolla,
E., Patrick, S., and Versace, M. (2010) Learning in a distributed
software architecture. Lecture Notes for Computer Sciences, Social
Informatics, and Telecommunications Engineering (LNICST).

Heffner, J., Mathis, M., Chandler, B. (2007) IPv4 Reassembly Errors
at High Data Rates. RFC 4963,
http://www.rfc-editor.org/rfc/rfc4963.txt

Awards IGERT Fellowship, Boston University 2010
Awarded through the Advanced Computation in Engineering and Sci-
ence training program to support interdisciplinary computational re-
search.

